UNIVERSITI TEKNOLOGI MARA

NEUROCOGNITIVE IMPAIRMENT IN GESTATIONAL DIABETES MELLITUS: OXIDATIVE STRESS AND INFLAMMATION AS POSSIBLE MECHANISM

NUR INTAN SAIDAAH BINTI MOHAMED YUSOF

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Pharmacy

October 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Nur Intan Saidaah binti Mohamed Yusof	
Student I.D.No	: 2014496906	
Programme	: Master of Science (Pharmacology)- PH766	
Faculty	: Pharmacy	
Thesis Title	: Neurocognitive Impairment in Gestational Diabetes Melli	tus:
	Oxidative Stress and Inflammation as Possible Mechanism	ns

Date : Octobe

: October 2017

ABSTRACT

The correlation between gestational diabetes mellitus (GDM) and cognition is modest. Some individuals remain cognitively intact during the gestational period despite the presence of GDM, whereas others show cognitive impairment and dementia in the same milieu. The aim of the present study was to examine the cognitive functions and evaluate the oxidative/inflammatory parameters in early and late stages of gestation in a GDM rat model. GDM has been associated with cognitive impairment as insulin receptors in the brain are located in the hippocampus, which is responsible for memory. Impaired insulin signaling in the brain may induce oxidative stress and inflammation, causing nerve damages and consequently cognitive impairment. In this study, we looked at the oxidative and inflammatory status in the brain of GDM rats on day 14 (D14) and 21 (D21), in addition to brain histology and cognitive function through Morris Water Maze (MWM) test. Gene expression of oxidative stress (SOD, CAT, GPX, p53, Hao-1) and inflammatory markers (IL-6, NF-Kb, IFN-y, TNF-a, PPAR-y, Vegf) were evaluated using quantitative RT-PCR analysis. The result showed that GDM group had a lower expression of antioxidant enzymes (SOD, CAT, GPX) on D14 and D21, and higher expression of Hao-1 and p53 than control. These indicate oxidative stress in brain of GDM rats. High expression of pro-inflammatory genes (IL-6, NF-Kb, IFN- γ , TNF- α) and low expression of anti-inflammatory genes (PPAR- γ , Vegf) were observed in the GDM group. Furthermore, disruption of normal layer organization, darkened and shrunken nuclei were observed in the hippocampus of GDM group, indicating apoptosis. GDM rats also showed impaired learning and memory function in the MWM test, where GDM rats clocked a longer escape latency time and shorter time spent in target quadrant than control. These findings provide evidence on the impairment of cognitive functions in GDM, which may be due to oxidative stress and inflammation in the brain.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to continue and complete my postgraduate studies. My gratitude and thanks goes to my supervisors, Dr. Cini Mathew John, Dr. Fazlin bte Mohd Fauzi and Prof Dr. Aishah Adam for the support, guidance, patience and ideas in assisting me with this project. I also would like to express my gratitude to my labmate, Siti Hajar binti Abdul Aziz for always helping me throughout this journey. My appreciation also goes to the Pharmacology Toxicology Lab staff for providing the facilities, knowledge and assistance. Special thanks to my colleagues and friends for helping me with this project. Finally, this thesis is dedicated to my loving father and my late mother also my brother and sister for the vision and determination to educate me.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iiii
ABSTRACT	iv v vii
ACKNOWLEDGEMENT	
TABLE OF CONTENTS	
LIST OF TABLES	ixx
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xii
e	
CHAPTER ONE: INTRODUCTION	1
1.1 Problem Statement	4
1.2 Hypothesis	4
1.3 Objective	4
1.4 Specific Objectives	4
CHAPTER TWO: LITERATURE REVIEW	5
2.1 Diabetes Mellitus	5
2.2 Gestational Diabetes Mellitus	5
2.3 Pathophysiology Of GDM	11
2.3.1 Adipose Tissue	13
2.3.1.1 Tumor Necrosis Factor α (TNF- α)	13
2.3.1.2 Adiponectin	14
2.3.1.3 Leptin	15
2.3.2 Hormonal Changes	- 15
2.3.2.1 Steroids Hormones	16
2.3.2.2 Human placental lactogen (HPL)	17
2.4 Effect Of Impaired Insulin Signaling On The Brain.	17
2.4.1 Types of Cognitive Impairment	17