UNIVERSITI TEKNOLOGI MARA

GENOTOXICITY AND CYTOTOXICITY PROFILES OF WINGED BEAN, GREEN SOYBEAN AND SEA CUCUMBER PROTEIN HYDROLYSATES

OBREN JAMES KAWANDING

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

January 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non- academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Obren James Kawanding
Student I.D. No	¥ k	2012689696
Programme		Master of Science (AS780)
Faculty	*	Applied Sciences
Thesis Title	ę	Genotoxicity and cytotoxicity profiles of winged
		bean, green soybean and sea cucumber protein
		hydrolysate
Signature of Student	:	
Date	•	January 2017

ABSTRACT

Winged bean (Psophocarpus tetragonolobus) seed protein hydrolysates, green soy bean (*Glycine max L*) seed protein hydrolysates and sea cucumber (*Stichopus horrens*) protein hydrolysate were known as a potential source for generating peptides with biological activities such as angiotensin-converting enzyme (ACE) inhibitory which act as an anti-hypertensive agent. Despite the functional properties of protein hydrolysate, there was lack of information on the safety of the hydrolysates. The safety of winged bean, green soy bean protein hydrolysates and sea cucumber (Stichopus horrens) protein hydrolysate has been confirmed in several in vitro studies including in vitro genotoxicity tests (Ames test and in vitro micronucleus test) and cytotoxicity test (neutral red uptake assay). Mutant strains of Salmonella typhimurium bacteria were used in Ames test to evaluate the mutagenicity effect of the protein hydrolysate samples while V79 Chinese hamster lung fibroblast cell was used to evaluate the clastogenicity effect of the hydrolysate samples. NIH/3T3 cell embryonic mouse fibroblast cell was used to determine the cytotoxic effect of the hydrolysate samples. The mutagenicity test, clastogenicity test and cytotoxicity test confirmed that winged bean, green soy bean and sea cucumber protein hydrolysates was not mutagenic, clastogenic and cytotoxic respectively. In conclusion, winged bean and green soy bean protein hydrolysate is safe in term of mutagenicity, clastogenicity and cytotoxicity. However, several tests including in vivo and pre-clinical study should be conducted in order to verify the safety of the protein hydrolysate samples so that the protein hydrolysate can be commercialized for human benefits.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my Master and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Assoc. Prof. Dr. Mohd Faiz Foong bin Abdullah, and cosupervisor, Prof. Dr. Noriham binti Abdullah and Assoc. Prof. Dr. Zainon Mohd Noor. Thank you for the support, patience and ideas in assisting me with this project. I also would like to express my gratitude to the staff of Agro Biotechnology Institute (ABI) (100-RMI/MOSTI 16/6/2 (1/2012) especially Prof. Dr. Nazamid bin Saari for their financial support during performing this study.

My appreciation also goes to the staff of Melaka Biotechnology Corporation who provided the mutagenicity, cytotoxicity and genotoxicity training. Apart from that, I would also like to express my gratitude to the lab assistant of Virology laboratory Mrs. Suriati Jaafar who provided the assistance during executing this study. In addition, special thanks to my colleagues and friends for helping me with this study.

Last but not least, this thesis is dedicated to both of my dear parents for their financial support and for their patience in waiting me to complete my Master project. Thank you.

TABLE OF CONTENTS

	Page	
CONFIRMATION BY PANEL OF EXAMINERS		
AUTHOR'S DECLARATION ABSTRACT		
		ACKNOWLEDGEMENT
TABLE OF CONTENTS		
LIST OF TABLES	x xi	
LIST OF FIGURES		
LIST OF ABBREVIATIONS	xii	
CHAPTER ONE: INTRODUCTION	1	
1.1 Research Background	1	
1.2 Problem Statement	3	
1.3 Objectives of Study	3	
1.4 Scope and Limitation of the Study	3	
1.5 Significance of Study	4	
1.6 Hypothesis	5	
CHAPTER TWO: LITERATURE REVIEW	6	
2.1 Protein Hydrolysate	6	
2.2 Production of Protein Hydrolysate	6	
2.3 Functional Properties of Protein Hydrolysates	7	
2.4 Sources of Protein Hydrolysate and Its Physiological Properties	7	
2.4.1 Antioxidant Peptides	8	
2.4.2 Anti-hypertensive Peptides	10	
2.5 Commercialized Protein Hydrolysates	13	
2.6 Safety of Protein Hydrolysate	14	
2.6.1 Protein Hydrolysate Toxicity	14	
2.6.2 Genotoxicity	14	
2.6.2.1 Ames Test	15	