

IMAGE PROCESSING METHOD OF WELD DISCONTINUITIES CAPTURED BY DIGITAL RADIOGRAPHY X-RAY USING MATLAB AND GUI

WAN MOHD AZHAR BIN WAN MOHD (2006131653)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical).

> Faculty of Mechanical Engineering Universiti Teknologi Mara (UiTM)

> > MAY 2010

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah s.w.t for giving me the faith and strength to finally complete this project successfully.

I would like to express my heartfelt gratitude and appreciation for my project supervisor, Dr. -Ing Yupiter Harangan Prasada Manurung for his supervision, continue support, generous guidance, advice and encouragement throughout the whole process of completing this project. His guidance and incisive advice have inspired me to generate fruitful approaches in achieving the objective of this project. Without him, I would not able to bring this research to a completion. Thank you for having the faith in me and trusted me all the way.

My gratitude is extended to my co supervisor, Puteri Zirwatul Nadila Bt Megat Zamanhuri who had always supervise, cooperate and support me to finish this project, as well as to technician at FKM's Advanced Manufacturing Laboratory, En Shahidan who had conducted me operate the X-Ray Machine.

A big appreciation to my family for giving me a lot of support and always be there whenever I needed them. Lastly, I would like to thank to all my friends for lending their hand to help me in any way.

Last but not least, I would like to express my sincere gratitude to my friend, Shiela who has dedicated his time to guide me in image processing and all my friends, for their unlimited support and encouragement.

ii

ABSTRACT

Radiography is one of the Non Destructive Testing (NDT) methods to visualize the inner structure of macroscopic samples. Development of the technology in engineering fields made the people enhanced the capabilities of the systems in order to reduce the cost, correct interpretation and also fast delivery feedback. The conventional in radiography is used film radiography and the newest is used filmless radiography or called digital radiography. The image processing is widely used in radiography to increase the quality of the image as well as to help the interpreter in analyzing welding discontinuity. The aim of this study is to develop analyzing tool to identify the welding discontinuities on welded part captured by digital radiography X-ray machine (ndt analyzer) at FKM's lab. The acquiring image will be improved using this analyzing tool so called "Advanced Defect Analyzer Tool (ADAT)". The results of using the ADAT will indicate the improvement image quality in shows the clear defect region and identify correct types of welding discontinuities. One of the advantages of ADAT is user friendly by providing the variable options of processing image for the user to observe the region of image. ADAT is fully developed using MATLAB 7.5(R2007b). In a first stage, image processing techniques, including noise reduction, contrast enhancement, and edge detection were investigated to help recognizing the weld discontinuity region of the specimen. For the second stage, the Graphical User Interface (GUI) was developed by compiling all the image processing methods. In the last stage, additional information that related to image processing and digital radiography X-ray are compiled into the tool (ADAT).

TABLE OF CONTENTS

CONTENTS

.

CHAPTER I

PAGE

COVER PAGE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS·	iv
LIST OF TABLES	ix
LIST OF FIGURES AND GRAPHS	xi
LIST OF ABBREVIATIONS	xiv
INTRODUCTION	1

1.1 Background of the Project	1
1.2 Objective of the Project	3
1.3 Problem Statement	4
1.4 Scope of the Project	5
1.5 Significant of the Project	6
1.6 Application of Digital Radiography	7

CHAPTER II LITERATURE REVIEW

2.1 Introduction to Image Processing		8
	2.2 Image Processing Method	9
	2.2.1 Median Filter	10
	2.2.2 Adaptive Histogram Equalization (AHE)	13
	2.2.3 Adaptive Filtering	16
	2.2.4 Edge Detection	17
	2.3 Defect Detection by Enhancement Technique	18
	2.4 Application Improved Film Radiography Image Using	20
	MATLAB GUI	

8

24

CHAPTER III RESEARCH METHODOLOGY	
----------------------------------	--

	3.1 Introduction	24
	3.2 Summary of Research Methodology	26
	3.3 Sample Image Captured	27
	3.4 Analysis the Result	27
	3.5 MATLAB Image Processing Method	28
	3.6 Development of ADAT Software in MATLAB GUI	30
	3.7 Compiling all MATLAB GUI Program	35
	3.8 Run the ADAT Software	35
CHAPTER IV	FUNDAMENTALS OF NON-DESTRUCTIVE	36
	TESTING	
	4.1 Non Destructive Testing (NDT) Methods	36
	4.2 Radiation Source	39
	4.3 Radiography Principle	41

- 4.3.1 Film Radiography 42 44
- 4.3.2 Digital Radiography