UNIVERSITI TEKNOLOGI MARA CAWANGAN PULAU PINANG

PLANT RECOGNITION BASED ON IDENTIFICATION OF LEAF IMAGE USING IMAGE PROCESSING

NOR SILAWATI BINTI SHA'ARI

Faculty Of Electrical Engineering

Jan 2018

AUTHOR'S DECLARATION

I declare that the work in the thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the results if my own, unless otherwise indicated or acknowledge as reference work.

I, hereby acknowledge that I have been supplied with the Academic Rules and Regulations, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nor Silawati binti Sha'ari
Student ID No	:	2014601396
Pragramme	:	Bachelor of Engineering (Hons) Electrical & Electronic
Faculty	:	Faculty of Electrical Engineering
Thesis Title	:	Plant Recognition Based on Identification of Leaf Image
		Using Image Processing
Signature of Student	:	
Date	:	January 2018

ABSTRACT

It is challenging task to analyze plant leaf images by a layman because there are very minute variations in some a plant leaf image and the large data set for analysis. It is also a quite difficult to develop an automated recognition system which could process a large information and provide a correct estimation. In this paper, by using the database available in the internet and using Neural Network (NN) as training algorithm, plant recognition based on leaves image would be developed. Image processing techniques are used to extract the leaf feature from histogram of the leaf image. These extracted features are used as inputs to neural network for classifying the plants. NN such as Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN) is trained in developing a classification system for agriculture purpose. ANN and KNN is applied to solve the problems in image analysis, pattern recognition and classification. For the ANN, Multilayer feed-forward networks are trained using Back Propagation (BP) learning algorithm and for the KNN, is used the most common distance which is Euclidean. The main objective is to developing a classification system for agriculture plant by image pre-processing, feature extraction, network training and classification. Under the current research, 80 leaves from 4 kinds of plants were collected. Out of these, 40 leaves were trained. The 40 leaves testing samples were recognized with 97.5% accuracy on ANN classify and 87.5% accuracy from KNN classify. The analysis and simulation of the classification of leaves image from different characteristics are tested are implemented in MATLAB.

ACKNOWLEDGMENT

Alhamdulillah. Aimed at 3 semester I undergo my final year project that begins on semester 7 until semester 9, finally I successfully finished my final year project. Firstly, I wish to thank Allah S.W.T for giving me the opportunity to embark on my Degree and for completing this long and challenging journey successfully. I always praying to Allah S.W.T hoping that my journey in this study always in His Bless. I would like to express my deepest appreciation to my supervisor Encik Ahmad Puad bin Ismail who has sharing the knowledge about the project and teaching me for a new knowledge.

Then, also expression of my thankfulness to the most precious persons in my life, my father, Sha'ari bin Abdul Rahman, my mother Noridzan binti Ibrahim and my family for nonstop of moral support and financial support at the beginning until now. Also special thanks to my colleagues and all my friends for never ending reminding me to always never give up on this project and be responsible during my project progress and also helping me with this project which are Syed Faris Arsyad, Nurul Asyikin and all friends. Appreciation to the panel which are Encik Saiful Fazly and Dr. Fadzil for the given feedback and guide line for my study on the project so that the project could be improve.

Finally, thanks to the Faculty of Electrical Engineering UiTM Penang. May Allah bless us, InsyaAllah.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	AUTHOR'S DECLARATION	i
	ABSTRACT	ii
	ACKNOWLEDGEMENT	iii
	TABLE OF CONTENTS	iv
	LIST OF TABLES	vi
	LIST OF FIGURES	vii
	LIST OF SYMBOLS	viii
	LIST OF ABBREVIATIONS	ix

1	INTRODUCTION	1
	1.1 Background Of Study	1
	1.2 Problem Statement	3
	1.3 Objective	4
	1.4 Scope Of Work And Limitation	5
	1.5 Thesis Organization	5
2	LITERATURE REVIEW	7
	2.1 Literature	7
	2.2 Plant Recognition	8
	2.3 Methods in Proposal	10
	2.3.1 Image Pre-Processing	10
	2.3.2 Feature Extraction	12
	2.3.3 Training and Testing Data Processing	14
	2.3.4 Classification Using ANN	15
	2.3.5 Classification Using KNN	17

3	METHODOLOGY	19
	3.1 Project Flow Chart	19
	3.2 Project Block Diagram	20
	3.3 Database	22
	3.4 Image Pre-Processing	23
	3.4.1 Colour to Grayscale Conversion	24
	3.4.2 Binary Conversion	24
	3.4.3 Incomplement Image	25
	3.4.4 Filling Holes	26
	3.4.5 Multiplying	26
	3.5 Feature Extraction	27
	3.6 Classification Methods	29
	3.6.1 ANN	29
	3.6.2 KNN	30
4	RESULT AND DISCUSSION	31
	4.1 Result	31
	4.2 Classification using ANN	32
	4.3 Classification using KNN	39
5	CONCLUSION AND FUTURE RECOMMENDATION	40
	5.1 Conclusion	40
	5.2 Future Recommendation	41
	REFERENCES	42
	APPENDICES A-C	46