UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF REFLECTANCE INDICATOR USING OPTICAL SENSING ON LATEX

FARIDATUL AIMA BINTI ISMAIL

Thesis submitted in fulfilment of the requirement for the degree of Master of Science

Faculty of Electrical Engineering

May 2017

ABSTRACT

Rubber breeding program is initiated by Rubber Research Institute of Malaysia for focusing on the best clone production which relies on the quality of the latex yielding for both latex and latex timber clones and known as RRIM clone series. Even though RRIM had overcome the problem to increase the yield of latex, but the difficulties in differentiating the clone series still prevailing due to lack of information in reference books and required skill from the expertise. Therefore, the objectives are to design measure and discriminate the latex of RRIM clones using optical sensing indicator via reflectance technique. This indicator used Near-Infrared LED to transmit the light and the photodiode will received the reflectance light and converted into voltage. The measured voltage then analyzed using SPSS tool to investigate the discrimination between clones. Based on the analysis, there are three clones (RRIM2002, 2007 and 3001) are distinguished between each other with p-value 0.000. However RRIM2008 and 2014 not distinguished amongst others and could be seen as one group. Yet these two groups are discriminated between each other. By completing the analysis, only four clones were decided to use as an input parameter for ANN toolbox. The best optimized hidden layer size at ± 0.5 fixed thresholds was 25 neurons with the testing accuracy of 74.4% and the true positive rate of this case is 73.9% (RRIM2002), 72.2% (RRIM2007), 61.4% (RRIM2008) and 94.1% (RRIM3001). Based on the findings, the objectives to measure latex via reflectance, identify and discriminate the selected RRIM clones series was successfully achieved.

ACKNOWLEDGMENT

First of all, I would like to say Alhamdulillah, for giving me the health and strength to do this research until done. A lot of the parties had contributed their skills, ideas and energy and also their time spend with me during the research.

I would like to extend my gratitude and acknowledge to my main supervisor namely Dr. Nina Korlina Madzhi and not to forget my co-supervisor Assoc. Prof. Dr. Hadzli Hashim. This research cannot be done without their knowledge and guidance. They gave a lot of supports, guidelines, ideas and comments from the beginning until the completion of my research on "Development of Reflectance Indicator using Optical Sensing on Latex".

Special thanks to my beloved parents, Ismail Abas and my late mother Che Noraini Arshad (1955 - 2014) for their encouragements and supports in all time. This piece of achievement is dedicated specially to both of you. Alhamdulillah.

Finally, thank you very much to my friends and RRIM staffs especially Mr. Amran Saari and Mr. Abdul Razak Ahmad, who willing to help me and sharing the priceless assistance. I am extremely thankful to all the persons who I mentioned above for their support in completing this research.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGMENT	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xv
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	3
1.3 Research Objectives	4
1.4 Scope and Limitation of The Study	4
1.5 Significance of The Study	5
1.6 Thesis Organization	6
CHAPTER TWO: LITERATURE REVIEW	. 8
2.1 Introduction	8
2.2 Investigation on Determination of Dry Rubber Content	8
2.3 Investigation on RRIM 2000 and 3000 Clone Series	12
2.4 Investigation on Latex Properties	15
2.5 Near Infrared as Electromagnetic Spectrum	16
2.6 Reflectance Technique	19
2.7 Near Infrared LED as A Sensing Indicator	20
2.8 Investigation on Identification System of Rubber Tree Clones	23
2.9 Artificial Neural Network (ANN) Application	24
2.10 Vision System (GUI)	27

2.11 Su	mmary
---------	-------

CHAPTER THREE: METHODOLOGY	31
3.1 Introduction	31
3.2 Flow Chart	31
3.3 Natural Rubber Latex Sample Collection	33
3.4 Circuit Design and Development	36
3.4.1 Schematic Circuit Diagram	36
3.4.2 Sensing Element and Signal Conditioning Near-IR LED	36
3.4.3 Photodiode	37
3.4.4 Voltage Follower or Buffer Amplifier	38
3.4.5 Inverting Amplifier	39
3.4.6 Circuit Performance	39
3.5 Hardware Design	41
3.5.1 Near-IR Configuration	41
3.6 Data Collection	42
3.7 Statistical Analysis	44
3.7.1 Test of Normality	45
3.7.2 Error Plot	47
3.7.3 One – Way Analysis of Variance (ANOVA) Test	48
3.8 Artificial Neural Network (ANN)	50
3.9 Vision System using GUI Tool	54
3.10 Validation System	56
3.11 Summary	56
CHAPTER FOUR: RESULT AND DISCUSSION	57
4.1 Introduction	57
4.2 Reflectance Measurement	57
4.3 Normality Test	60
4.3.1 Kolmogorov – Smirnov ^a Statistical	60
4.3.2 Histogram of Normal Distribution	61
4.4 Error Plot	63
4.5 One - Way Analysis of Variance (ANOVA)	64

29