## **UNIVERSITI TEKNOLOGI MARA**

# ELASTIC AND STRUCTURAL STUDIES OF TeO<sub>2</sub>-Nb<sub>2</sub>O<sub>5</sub>-ZnO AND TeO<sub>2</sub>-Nb<sub>2</sub>O<sub>5</sub>-ZnO-Er<sub>2</sub>O<sub>3</sub> TELLURITE GLASS SYSTEMS

## NUR BAIZURA MOHAMED

Thesis submitted in fulfilment of the requirements For the degree of Master of Science

**Faculty of Applied Sciences** 

October 2011

#### ABSTRACT

Ternary (90-x)TeO<sub>2</sub>-10Nb<sub>2</sub>O<sub>5</sub>-(x)ZnO, x = 0 - 15 mol% and 75TeO<sub>2</sub>-(10-y)Nb<sub>2</sub>O<sub>5</sub>- $15ZnO_{(y)}Er_{2}O_{3}$ , y = 0.0 - 2.5 mol% glass systems have been prepared by meltquenching method. Elastic properties together with structural properties of the glasses were investigated by measuring sound velocity using the pulse-echo-overlap technique and Fourier Transform Infrared (FTIR), respectively. For (90-x)TeO<sub>2</sub>-10Nb<sub>2</sub>O<sub>5</sub>-(x)ZnO glass, ultrasonic velocities, related elastic moduli and Debye temperature were observed to drop at x = 5 mol% but increased back at x > 5 mol%. The former is suggested to be due to increase in non-bridging oxygen (NBO) ions as a direct effect of TeO<sub>2</sub> reduction while the latter occur is suggested due to increase in bridging oxygen (BO) ions which improved the glass network rigidity. For 75TeO<sub>2</sub>- $(10-y)Nb_2O_5-15ZnO_{(y)}Er_2O_3$  glass, shear velocity, shear modulus, Young's modulus and Debye temperature were observed to initially decrease at y = 0.5 mol%but remained constant between x = 1.0 mol% to y = 2.0 mol%, before increasing back with  $Er_2O_3$  addition at y = 2.5 mol%. The initial decrease of shear velocity and related elastic moduli are suggested to be due to increase in NBO ions. This was followed by competition between BO and NBO ions in the glass network between y = 0.5 to 2.0 mol%, where BO seems to be more dominant compared to NBO when Nb<sub>2</sub>O<sub>5</sub> content reached 2.5 mol% replacement with Er<sub>2</sub>O<sub>3</sub>. FTIR analysis on infrared (IR) absorption peak of NbO<sub>6</sub> octahedral, TeO<sub>3</sub> trigonal pyramid (tp), TeO<sub>4</sub> trigonal bipyramid (tbp) and ZnO<sub>4</sub> tetrahedral indicates variation of BO and NBO in the glass network and this supports the explanation for the elastic properties given for both glasses. The combined results of ultrasonic velocity and IR absorption spectra revealed that each structural compound, TeO<sub>2</sub>, Nb<sub>2</sub>O<sub>5</sub>, ZnO and Er<sub>2</sub>O<sub>3</sub> play significant roles in formation of both BO and NBO and modifications of the glass network structure.

X

#### **ACKNOWLEDGEMENTS**

First of all, Alhamdulillah to Allah Al-Mighty because of His will, I have successfully completed this research and my study. I would like to express sincere gratitude to my kind and dedicated supervisor, Prof. Dr. Ahmad Kamal Hayati bin Yahya (A. K. Yahya) for his constant inspiration, encouragement, support and guidance to me during the project and writing up of this thesis.

I am also grateful to my co-supervisor Associate Prof. Dr. Mohd. Salleh bin Mohd. Deni for his friendly advice and it is my pleasure to thank Prof. Sidek, Dr. Halimah and members from the Ultrasonic Laboratory, Faculty of Science, Universiti Putra Malaysia for their valuable help and information on beginning stage of samples preparation.

Besides that, I would likes to express appreciation to my senior, Pn. Norazila, Norashikin, Nurulhuda, Syafawati and Muzammir, besides my friends, Masliyana, Azwani, Rozilah, Shabani, Azliza, Suhadir, Norezan, Azianty, Umair and Ikhwan, for their support and ideas related to the research. Not forgetting also thanks goes to Science Officers and Lab Assistants in the Faculty of Applied Sciences for their help in running related instruments and equipments for my research.

Last but not least, colourful thanks to my family members especially my mum and dad for their advices that has motivated me very much and for their continuous prayer for my success. Thanks to all individual who have contributed directly and indirectly throughout this study completion.

Nur Baizura Mohamed October 2011

## **TABLE OF CONTENTS**

| TITLE PAGE                       | •          |
|----------------------------------|------------|
| AUTHOR'S DECLARATION             | ii         |
| ABSTRACT                         | iii        |
| ACKNOWLEDGEMENTS                 | iv         |
| TABLE OF CONTENTS                | Ŷ          |
| LIST OF TABLES                   | vii        |
| LIST OF FIGURES v                | <i>iii</i> |
| LIST OF SYMBOL AND ABBREVIATIONS | xii        |

## **CHAPTER 1: INTRODUCTION**

| 1.1 | Background          | 1 |
|-----|---------------------|---|
| 1.2 | Problem Statement   | 4 |
| 1.3 | Objectives of Study | 5 |
| 1.4 | Significance Study  | 6 |

## **CHAPTER 2: LITERATURE REVIEW**

| ement                                    | 7                                                                                                                                                                         |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                          | 4                                                                                                                                                                         |  |  |  |
|                                          | 8                                                                                                                                                                         |  |  |  |
| d Crystalline Solids                     | 9                                                                                                                                                                         |  |  |  |
| -                                        | 11                                                                                                                                                                        |  |  |  |
|                                          | 11                                                                                                                                                                        |  |  |  |
|                                          | 13                                                                                                                                                                        |  |  |  |
| Tellurite Glasses                        |                                                                                                                                                                           |  |  |  |
|                                          | 15                                                                                                                                                                        |  |  |  |
|                                          | 19                                                                                                                                                                        |  |  |  |
| (TeO <sub>2</sub> ) Glasses              | 24                                                                                                                                                                        |  |  |  |
| ) Spectroscopy                           |                                                                                                                                                                           |  |  |  |
| Measurement on Some Glass System         |                                                                                                                                                                           |  |  |  |
| and TeO <sub>2</sub> Glass-              |                                                                                                                                                                           |  |  |  |
|                                          | 27                                                                                                                                                                        |  |  |  |
| Glass                                    | 28                                                                                                                                                                        |  |  |  |
| ass doped Er <sub>2</sub> O <sub>3</sub> | 30                                                                                                                                                                        |  |  |  |
| -ZnO Glass                               | 31                                                                                                                                                                        |  |  |  |
| ses                                      | 32                                                                                                                                                                        |  |  |  |
| Aeasurements'                            |                                                                                                                                                                           |  |  |  |
| Studies on Glass Systems                 |                                                                                                                                                                           |  |  |  |
| Properties                               | 33                                                                                                                                                                        |  |  |  |
| Cellurite Glass                          |                                                                                                                                                                           |  |  |  |
|                                          | 37                                                                                                                                                                        |  |  |  |
| Doped Tellurite and                      |                                                                                                                                                                           |  |  |  |
| ·                                        | 37                                                                                                                                                                        |  |  |  |
|                                          | ) Spectroscopy<br>and TeO <sub>2</sub> Glass-<br>Glass<br>ass doped Er <sub>2</sub> O <sub>3</sub><br>-ZnO Glass<br>ses<br>Measurements'<br>Properties<br>'ellurite Glass |  |  |  |

### **CHAPTER 1**

### INTRODUCTION

#### **1.1 Background**

Glass is an amorphous (non-crystalline) solid usually formed by the solidification of a melt without crystallization. Compared with crystals, the structure of glass is devoid of a regular arrangement with no long range order of atoms in a reciprocal lattice (Zallen, 1998 and Scholze, 1991).

In the last decades, TeO<sub>2</sub>-based glasses have been the subject of scientific and technological interest (Saddeek, 2005) due to their good mechanical strength and chemical durability (Rolli *et al.*, 2001, Lin *et al.*, 2004 and Desirena *et al.*, 2008), non hygroscopicity (Sidkey *et al.*, 1997 and El-Mallawany, 1998), low melting temperature (Lin *et al.*, 2004), high refractive indices (Afifi and Marzouk, 2003, Lakshminarayana *et al.*, 2009 and Yakhkind, 1966) and good infrared (IR) (Sidkey *et al.*, 1997 and Saddeek, 2005) and visible wavelength transmission (Vogel *et al.*, 1991, Takebe *et al.*, 1994 and Kalampounias *et al.*, 2006). These properties make tellurite (TeO<sub>2</sub>) glasses good candidates for development of optical devices (Rolli *et al.*, 2001 and Ozdanova *et al.*, 2007) and photonic applications such as optical window and laser materials (El-Mallawany, 1992 and Shen *et al.*, 2007).

Tellurium oxide (TeO<sub>2</sub>) under normal conditions does not have the ability to form glass without a modifier like alkali, alkaline earth and transition metal oxide or other glass modifiers (Sharaf El-Deen *et al.*, 2008, Neov *et al.*, 1979 and Bale *et al.*,2008). Binary zinc-tellurite glasses have been extensively studied (Burger *et al.*, 1992, Jaba *et al.*, 2005, Shaaban *et al.*, 2006, Surendra Babu *et al.*, 2007 and Sahar *et al.*, 2008) and can be considered as a choice for superheavy optical flint glasses (El-Mallawany,