UNIVERSITI TEKNOLOGI MARA

COMPARISON BETWEEN MICROSCRIBE-3DXL SYSTEM WITH RADIOGRAPHIC CEPHALOMETRIC SYSTEM ON MALAYSIAN MALAY NORMS

MAHER MANSOUR BARMOU

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Dentistry

July 2017

ABSTRACT

Conventionally cephalometric analysis involves radiographic exposure; researchers have studied several alternative methods to avoid the radiation hazards, one of the promising ideas is MicroScribe-3DXL. The objective of this study is to investigate the probability of using the MicroScribe-3DXL system as an alternative method of the cephalometric radiographic. Nine landmarks were chosen (Facial angle, ANB, Maxillary depth, U1/FH, FMA, IMPA, FMIA, A-Na-Perp, and Pog-Np), to compare the reliability and the validity of MicroScribe-3DXL with the conventional cephalometric radiographs. The sample was 60 Malay subjects selected under specific criteria with normal occlusion (30 males and 30 females). Two standard images were taken for each subject; one by the conventional cephalometric radiograph and one by the MicroScribe-3DXL. After tracing each image, a comparison were conducted between the results of the two methods, paired t-test was conducted and p value was set at p < 0.05. The results showed statically a significant difference in five measurements (U1/FH, FMA, IMPA, FMIA and Pog-Np). The difference in the measurements (FMA, IMPA, FMIA and Pog-Np) considered accepted clinically. While U1/FH measurement showed clinically significant difference. The overall reliability of MicroScribe-3DXL was 92.7%; its validity was 91.8%. This study has introduced the MicroScribe-3DXL as a promising device to assist in diverse areas in dentistry. Especially in Orthodontics, in order to improve diagnosing and treatment planning. The conclusion is MicroScribe-3DXL is reliable and valid to most of cephalometric landmarks investigated in this study to a certain limit. Using MicroScribe-3DXL saves time and reduce the cost.

ACKNOWLEDGMENT

It is indeed a defining point in my life as to pen down a few words of immense gratitude to certain people who have had a huge impact on my life. First of all I thank the almighty Allah for bringing me here, although I have had great time doing this research, reading, learning, conducting experiments and improving my academic skills but my life outside the faculty was not that pleasant. In the end, this thesis is a step on the right track. My deepest thanks to the respectable dean of the Faculty of Dentistry, my main supervisor Professor Dr. Mohamed Ibrahim Abu Hassan, for his endless support and valuable guidance. He has been always the best example for every student and staff in the faculty, his academic expertise and his leadership. I am forever indebted to him. I am grateful for the opportunity I was given by Professor Dr. Satoshi Nagasaka from Tsurumi University in Japan who allowed me to use the MicroScribe-3DXL device in this research. I thank my co-supervisor Dr. Saba F. Hussain for her patience and priceless help, without the necessary inputs from her, my efforts would have been in vain. Also, I fondly want to thank our coordinators, Dr. Maryati Md. Dasor and Dr. Budi Aslinie Md. Sabri, who were always in the student side, despite all the responsibilities they have, they always have the time to listen and help. My deep thanks go to every employee in the Faculty of Dentistry. I owe too much and can only write too little. I would like to thank my brother Mosab Al-Rawi for being a true friend, knowing him was a blessing for me in many different ways. My thoughts also go out to every friend who made a difference in my life.

Certainly my family, especially my Mom and Dad will be mentioned here and in my daily prayers, they have supported me unflinchingly. Despite my delay, they believed in me; I can never repay them.

TABLE OF CONTENTS

			Page
CO	NFIRM	IATION BY PANEL OF EXAMINERS	ii
AU	rhor'	'S DECLARATION	iii
ABS	STRAC	CT CT	iv
AC	KNOW	LEDGMENT	v
TABLE OF CONTENTS			ivi
LIS	T OF I	TABLES	x
LIS	T OF F	FIGURES	xi
LIST OF ABBREVIATIONS			xii
СН	APTEF	RONE: INTRODUCTION	1
1.1	Resea	arch Background	1
1.2	Stater	nent of the Problem	2
1.3	Objec	ctives of the Study	3
1.4	Signi	ficance of the Study	4
1.5	Resea	4	
	1.5.1	Hypothesis One	4
	1.5.2	Hypothesis Two	4
СН	APTEF	R TWO: LITERATURE REVIEW	5
2.1	Introd	5	
	2.1.1	History of X-ray Medical Implementations	6
	2.1.2	Phase-Contrast X-ray Imaging	6
	2.1.3	X-ray Interferometry	7
	2.1.4	Diffraction-Enhanced Imaging	8
	2.1.5	Photostimulable Phosphor (PSP) Systems	9
	2.1.6	Intra-Oral Radiographs	9
2.2	Projection Radiography of X-ray		10

2.3	Medical Applications of Phase-Contrast X-ray Imaging Systems		
2.4	X-ray in Dentistry		
2.5	Risks of Radiation in X-ray		
2.6	Dose Reduction	13	
2.7	Radiographic Cephalometric	14	
	2.7.1 MSCT Scanner	15	
	2.7.2 3D CT Scan	15	
2.8	Skeletal and Dental Landmarks	17	
2.9	Radiographic Cephalometric Analysis		
2.10	Soft Tissues		
2.11	Soft Tissues for Genders and Ethnics	21	
2.12	Digital Tracing of Cephalometric	22	
	2.12.1 History	22	
	2.12.2 Dolphin Tracing Software	24	
	2.12.3 The Picture Archiving and Communications System (PACS)	24	
	2.12.4 Limitations of the LCR	25	
2.13	Three Dimensions Methods	26	
	2.13.1 History	26	
2.14	Non-Radiographic Methods	27	
	2.14.1 Introduction	27	
2.15	Common Non-Radiographic Methods	28	
	2.15.1 3D Laser Scanning	29	
	2.15.2 Hand Held Laser Scanner	30	
	2.15.3 3D Ultrasonography	31	
	2.15.4 DigiGraph	31	
	2.15.5 Stereophotogrammetry	32	
	2.15.6 3dMDFace System	35	
2.16	The Workability of Non-Radiographic Methods	36	
2.17	Applications of Three Dimensional Surface Imaging	37	
2.18	Validity of the Measurements of Non-Radiographic Methods	40	
2.19	Advantages of Non-Radiographic Systems	40	
2.20	Disadvantage of Non-Radiographic Systems	42	
2.21	Overview of Microscribe-3DXL	43	
2.22	Projecting Method	46	