UNIVERSITI TEKNOLOGI MARA

MICROFIBER BRAGG GRATING SENSOR EMPLOYING ZINC OXIDE NANOSTRUCTURES AND NANORODS FOR ENVIRONMENTAL APPLICATIONS

AISYAH BINTI MOHAMAD ARIS

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

February 2018

ABSTRACT

Fiber Bragg gratings (FBG) possess great potential in numerous applications due to its robustness, flexibility and high efficiency. The fabrication of an FBG into a microfiber extend the evanescent field outside the ambient-cladding boundary and enhance its responsivity towards environmental changes such as humidity and temperature. More importantly, the attachment of sensitive materials that induce strain and change in the refractive index (RI) are essential for manipulating FBG as a humidity sensor. Hence, this research aims at studying the effect of synthesizing zinc oxide (ZnO) nanostructures on a micro-FBG surface using the hydrothermal method. The energy efficient and low cost hydrothermal method resulted in a successful growth of the ZnO nanostructures. Due to the flexibility of the hydrothermal method in controlling the ZnO morphology, through modifications in the seeding technique and the growth process, a highly oriented ZnO nanorod arrays were successfully obtained. Based on the relative humidity (RH) sensor experiments, the ZnO nanorods coating generally exhibited a higher increase in sensitivity of 100% compared to that of the ZnO nanostructures coating which is 85%; both of which were measured against their bare counterpart. Owing to the superior performance of ZnO nanorods, its implementation in temperature sensing effectively demonstrated a 24 times improvement from the bare micro-FBG, bringing down the sensor resolution value to 0.02°C from 0.48°C originally.

ACKNOWLEDGEMENT

First and foremost, I would like to dedicate my utmost gratitude towards my main supervisor, Dr. Husna Abdul Rahman for her patience, guidance and encouragement throughout my time under her supervision. I am incredibly thankful for all the advices and valuable suggestions given which are helpful in completing this thesis.

My deepest appreciation goes out to my co-supervisor, Prof. Dr. Sulaiman Wadi Harun for offering me the opportunity to carry out my research at Photonics Research Centre (PRC) and Nanotechnology Lab, University of Malaya and also for his endless support during my time there.

I am very grateful towards Dr. Lim Kok Sing from PRC for providing me the fiber Bragg gratings that are essential for my research. A special thanks goes to Assoc. Prof. Dr. Roslan Md Nor for generously lending me his lab equipment during the early stage of my synthesis works.

My big sincere gratitude towards my fellow colleagues at PRC for the great moments I had when working together and for their great guidance, assistance and all the helpful discussions.

I would also like to extend my greatest appreciation towards my family members for their undying support all this while.

Lastly, to those who had contributed to this work either directly or indirectly, I thank you from the bottom of my heart.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	3
1.3 Research Objectives	4
1.4 Scope of Research	4
1.5 Significance of Research	4
1.6 Thesis Outline	5
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Fiber Bragg Grating	6
2.2.1 FBG Based Humidity Sensor	11
2.2.2 FBG Based Temperature Sensor	15
2.3 Zinc Oxide	19
2.3.1 Zinc Oxide Application in Fiber Optic Sensors	20
2.3.2 Hydrothermal Method	21

CHAPTER THREE: METHODOLOGY	23
3.1 Introduction	23

3.2	Fiber Preparation	24
	3.2.1 Production of Fiber Bragg Grating (FBG)	24
	3.2.2 Fabrication of Microfiber Using Chemical Etching	24
3.3	Hydrothermal Synthesis of Zinc Oxide Nanostructures/Nanorods	28
	3.3.1 Synthesis of Zinc Oxide Nanostructures	28
	3.3.1.1 Seeding Process	28
	3.3.1.2 Growth Process	30
	3.3.1.3 Surface Morphology	31
	3.3.2 Synthesis of Zinc Oxide Nanorods	33
	3.3.2.1 Seeding Process	33
	3.3.2.2 Growth Process	36
7	3.3.2.3 Surface Morphology	37
3.4	Experimental Setup	39
	3.4.1 Relative Humidity Measurement	39
	3.4.2 Temperature Measurement	40
3.5	Summary	42
СН	APTER FOUR: RESULTS AND DISCUSSION	43
4.1	Introduction	43
4.2	The Effect of Etching on Fiber Bragg Grating (FBG)	44
4.3	Sensor Performance Characteristics	46
	4.3.1 Sensitivity	46
	4.3.2 Linear Range	46
	4.3.3 Linearity	46
	4.3.4 Standard Deviation	47
	4.3.5 Resolution	47
4.4	Zinc Oxide Nanostructures Coating	48
	4.4.1 Application as Humidity Sensor	48
	4.4.1.1 Bragg Wavelength Shift	48
	4.4.1.2 Output Power	50
4.5	Characterization of Zinc Oxide Nanorods	52
	4.5.1 Structural Properties of Zinc Oxide Nanorods	53
	4.5.2 Optical Properties of Zinc Oxide Nanorods	55
4.6	Zinc Oxide Nanorods Coating	57