

IMPLEMENTING LOOPS SYSTEM FOR CONTROLLING TOOL MOVEMENT

MUHAMMAD FAIZUL RIZAL B.ZAINAL ALAM (2005388876)

A thesis submitted in partial fulfilment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

MEI 2010

ACKNOWLEDGEMENT

I would like to express my highest gratitude to those who have given their contribution whether directly or indirectly in completing this proposal. Without them, it would have not been possible for me to complete this proposal successfully.

Firstly, I would like to thank the Faculty of Mechanical Engineering of MARA University of Technology (UiTM), Shah Alam for giving me the opportunity to work on the project. It is deeply appreciated that the Faculty had permitted the use of its facilities to perform the necessary research work.

Secondly, I want to thank my supervisor, Puan Nursalbiah Binti Nasir, who I am deeply indebted to for giving me the permission and encouragement to carry on with this project. I am truly grateful for all her guidance and time dedicated in helping me in the research and writing of this proposal.

In addition, this proposal would not have been successful without the assistance from Kumpulan Pintasan (M) Sdn Bhd group, led by its General Manager, Encik Muhammad Saiful Azli. This proposal is made possible due to the support, interesting ideas, and valuable hints provided by them. I highly appreciate the time, effort and cooperation given by the group.

Last but not least, I want to give my special thanks to my family who never fail to give their blessings and encouragement throughout the preparation of the proposal. To those not specifically mentioned here, I extend my sincerest appreciation for their fullest support.

ABSTRACT

Today's manufacturing industry has increasingly demanding productivity and profitability requirements. Such demands can be satisfied only if production systems are highly automated and extremely flexible. One of the main activities the manufacturing industry has to deal with is machining. In machining, as in any production process, optimal performance is always to be desired. This project focusing in designing a machine and its controller consist of Machine Control Unit (MCU) the brain of the Numerical control machine (NC), The Data Processing Unit (DPU) which reads the part program and The Control Loop Unit (CLU) that controls the machine tool operation. By implementing Open Loop Systems for Controlling Tool Movement, stepping motor are used to create movement. Motors rotate a fixed pulse for each signal received from the MCU. The motor sends a signal back indicating that the movement is completed. No feedback to check how close the actual machine movement comes to the exact movement programmed. This project significantly to integrate the manufacturing technology knowledge and individuals skills in order to apply in the real field and to improve the capability of the current Computer Numerical Control (CNC) milling machine with auditioning of advance equipment that enhances the precision, smoother machine action and upgraded control system.

TABLE OF CONTENTS

CONTENTS	S	PAGE	
IMPLE	EMENTING LOOPS SYSTEM FOR CONTROL	LING TOOL	
MOVE	EMENT	i	
ACKN	IOWLEDGEMENT	ii	
ABSTI	RACT	iii	
TABLI	E OF CONTENTS	iv	
LIST	OF TABLES	viii	
LIST OF FIGURES			
LIST	OF ABBREVIATIONS	xi	
CHAPTER 1	INTRODUCTION		
1.1	Background	1	
1.2	Objectives		
1.3	Significant of the Project		
1.4	Scope of the Project		
CHAPTER 2	2 LITERATURE REVIEW		
2.1	Computer Numerical Control (CNC)		
	2.1.1 Accuracy of Controlling Tool movements	using An Open	
	loop control Operation	5	
2.2	Overall Design Intergration	7	
	2.2.1 Components Integration iv	7	

2.3	CNC Controller		δ	
	2.3.1	Machine Control Unit (MCU)	8	
	2.3.1.1	Programmable Logic Controller (PLC)	9	
	2.3.1.2	Functionality	10	
	2.3.1.3	Digital and Analog signals	10	
	2.3.1.4	Programming PLC	11	
	2.3.1.5	Types of Control System	12	
	2.3.2	The Data Processing Unit (DPU)	13	
	2.3.2.1	Object Linking and Embedding	13	
	2.3.2.2	Microsoft Visual Basic 6.0 Professional	14	
	2.3.3	The Control Loop Unit (CLU)	14	
	2.3.3.1	Loop Systems for Controlling Tool Movement	14	
	2.3.3.2	Open Loop System	15	
	2.3.3.3	Closed Loop System	15	
	2.3.3.4	Process in Designing Control system	16	
	2.3.3.5	Stepper motor as selection to implement Open loop control	16	
CHAPTER 3	METH	METHODOLOGY		
3.0	Process Flow Diagram 1			
3.1	Conceptual Design		19	
	3.1.1	Mechanical Design Concept	19	
	3.1.1.1	Machines Structures Concept	19	
	3.1.1.2	Rigidity of Structure	20	
	3.1.1.3	Machine Sizing	20	
	3.1.1.4	Types of bearings and couplings	20	
	3.1.2	Electronic Design Concept	21	
	3.1.2.1	Achieving Positioning Accuracy Goals	21	
	3.1.2.2	Component Selection	21	
	3.1.2.3	Error Budgeting: Resolution	22	
	3.1.2.4	Stepper motor Driver for open loop control	22	
	3.1.2.5	Temporary I/O extended termination station	24	
			~~	
	3.1.3	Electrical Design Concept	25	
		Electrical Design Concept PLC I/0 Termination	25 25	