UNIVERSITI TEKNOLOGI MARA

BIODEGRADATION OF LOW-DENSITY POLYETHYLENE (LDPE) MIXED WITH POTATO STARCH BY Aspergillus niger, Rhizopus oryzae AND THEIR BIOFILM

NURHIDAYAH BINTI ZAKARIA

Thesis submitted in partial fulfilment of the requirements for the degree of **Bachelor of Science (Hons.)** (Biology)

Faculty of Applied Sciences

July 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurhidayah Binti Zakaria
Student I.D. No.	:	2016552257
Programme	:	Bachelor of Science (Hons.) Biology -
		AS201
Faculty	:	Applied Sciences
Thesis Title	:	Biodegradation of Low-Density Polyethylene
		(LDPE) Mixed with Potato Starch by
		Aspergillus niger, Rhizopus oryzae and
		Their Biofilm

Signature of Student	:	
Date	:	July 2019

ABSTRACT

Low-density polyethylene (LDPE) is the most commonly used in plastic packaging such as for grocery bags or plastic wrap. Unfortunately, the rate of polyethylene production and consumption exceeds the rate of disposal. Several methods had been proposed to overcome this problem such as integrating this plastic material with biodegradable elements such as potato starch. However, study in degradation and decomposition of LDPE mixed with potato starch by fungi's biofilm is limited. Thus, the aim of this study is to form biofilm of Aspergillus niger and Rhizopus oryzae for bioplastic degradation by growing in 96-well flat bottomed microtiter plate. The rate of biodegradability LDPE mixed with potato starch were analysed by using soil buried test, enzymatic activities and Fourier Transform Infrared Spectroscopy (FTIR). The rate of biodegradation of LDPE mixed with potato starch is influenced by enzymatic activities of A. niger and R. oryzae. The weight losses of LDPE mixed with potato starch during biodegradation were also determined. The percentage weight loss of LDPE mixed with potato starch in biofilm is the highest which is 0.48% compared to A. niger and R. oryzae which are 0.31% and 0.24% respectively. In short, the rate of degradation of LDPE mixed with potato starch is higher when using biofilm of A. niger and R. oryzae compared to A. niger or R. oryzae alone. Based on FTIR analysis, there are structural changes of the polymeric matrix which indicates LDPE mixed with potato starch were biodegraded by A. niger, R. oryzae and their biofilm. In conclusion, this study will give benefits to communities to solve the problems due to the abundance of plastics with a convenient, cheaper and environmentally way.

Keywords: Aspergillus niger, Rhizopus oryzae, biofilm, LDPE mixed potato starch

TABLE OF CONTENTS

6

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xii

CHAPTER ONE: INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Significance of Study	4
1.4 Objective of Study	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Low-Density Polyethylene (LDPE) Plastic	6
2.2	Biodegradation of Plastics	6
2.3	Aspergillus	8
	2.3.1 General Characteristics of Aspergillus	8
	2.3.2 Aspergillus niger	9
2.4	Rhizopus	10
	2.4.1 Rhizopus oryzae	10
2.5	Fungal Biofilm	11

CHAPTER THREE: RESEARCH METHODOLOGY	12	
3.1 Sample Preparation	12	
3.2 Culture of Microorganisms		
3.2.1 Culture Media Preparation	12	
3.2.2 Culturing Fungi	12	
3.3 Preparation of Biofilm	12	
3.4 Enzymatic Test	13	
3.4.1 Amylase Test	13	
3.4.2 Cellulase Test	13	
3.5 Growth Medium for Low Density Polyethylene and Fermentation		
3.6 Weight Loss Measurements	14	
3.7 Fourier Transform Infrared Spectroscopy (FTIR) Analysis for		
Functional Groups	14	
CHAPTER FOUR: RESULTS AND DISCUSSION	16	
4.1 Formation of Biofilm	16	
4.2 Surface Morphology of Fungi Biofilm	17	
4.3 Analysis of Weight Loss of LDPE Mixed with Potato Starch		
4.4 Enzymatic Analysis	21	
4.4.1 Amylase Test	21	
4.4.2 Cellulase Test	23	
4.5 Fourier Transform Infrared Spectroscopy (FTIR) Analysis for	25	
Functional Groups		
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	27	
5.1 Conclusion	27	
5.2 Recommendations		
REFERENCES		
APPENDICES		
AUTHOR'S PROFILE		