

# TO OBTAIN THE OPTIMUM PARAMETERS FOR WELDING OF COPPER AND ALUMINUM USING FRICTION WELDING TECHNIQUE

## MCDAWSON ANAK DEWK (2007271162)

A thesis submitted in partial fulfillment of the requirement for the award of Bachelor Engineering (Hons) Mechanical

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > JANUARY-MAY 2010



#### ACKNOWLEDGEMENT

I am very thankful and highest gratitude towards God, it is because of His blessing that I am manage to finish the intended task, which is my Final Year Project KJM660.

Contribution to the success of this project came from the many people who have helped me, directly and indirectly, with their intellectual insights, kindness and moral support.

I extended my sincere acknowledgment to my advisor, Assoc. Prof. Sunhaji Kiyai Abas and also my co-supervisor, Dr. Yupiter HP. Manurong for giving me space to learn and pursue my practical smoothly.

Not to be missed, much gratitude to my family and friends who have given me more than a hand needs directly or indirectly through my practical. Their support and patience really gave me the surplus of energy to finish this report.

Thank You.

ii

#### ABSTRACT

Friction welding is one of the most simple, economical and highly productive method to join similar and dissimilar metals. Welding dissimilar metals is one of the biggest challenges faced by manufacturers and users because of difficulty to find the suitable welding parameters to cause good bonding to happen. The aim of this project is to focus on the finding of optimum parameters of friction welding technique to desired welding quality. In the present work, pure copper was friction welded to aluminum allow (6061 Al). The diameter and length of both rods are 10mm and 60mm respectively. Surfacing is done on the copper to ensure that bonding occurred at the interface of the welded joint. Copper is the rotational part due to its hardness, while aluminum is the stationary part. Four parameters that need to be determined are the heating pressure, the heating time, the upset/ forging pressure, and the forging/ weld time, which will be obtained in sequence. On the other hand, the warm up pressure, warm up time, and the rotational speed are set to be constant. Five samples are used to determine each parameter. Various tests such as Visual Inspection, Tensile Test, Bending, Macro Structure Test, and Radiographic Test would be conducted to meet the weld quality requirement. It is found that the best optimum welding parameters between copper and aluminum are as follow; warm-up pressure =  $10 \text{kgf/cm}^2$ , warm-up time = 1 sec, heating pressure =  $45 \text{kgf/cm}^2$ , heating time = 4sec, forging pressure =  $65 \text{kgf/cm}^2$ , the, and forging time = 5sec.

iii

### TABLE OF CONTENT

|           | CON               | CONTENT                                         |    |  |
|-----------|-------------------|-------------------------------------------------|----|--|
|           | PAG               | i<br>ii<br>iii<br>iv                            |    |  |
|           | ACK               |                                                 |    |  |
|           | ABS               |                                                 |    |  |
|           | TAB               |                                                 |    |  |
|           | LIST              | vii                                             |    |  |
|           | LIST              | viii                                            |    |  |
| CHAPTER 1 | INT               | 1                                               |    |  |
|           | 1.1               | BACKGROUND                                      | 1  |  |
|           | 1.2               | OBJECTIVE                                       | 2  |  |
|           | 1.3               | SCOPE OF STUDY                                  | 2  |  |
|           | 1.4               | SIGNIFICANT OF PROJECT                          | 3  |  |
| CHAPTER 2 | LITERATURE REVIEW |                                                 |    |  |
|           | 2.1               | <b>REVIEWS ON WELDING TECHNIQUES</b>            | 4  |  |
|           |                   | 2.1.1 Outlines of Welding Techniques            | 5  |  |
|           | 2.2               | <b>REVIEWS ON FRICTION WELDING</b>              | 5  |  |
|           |                   | 2.2.1 Specification of friction welding machine | 6  |  |
|           | 2.3               | COPPER (CU)                                     | 8  |  |
|           |                   | 2.3.1 Characteristic of Copper                  | 8  |  |
|           |                   | 2.3.2 Weldability of copper alloy               | 9  |  |
|           | 2.4               | ALUMINUM (AL)                                   | 10 |  |
|           |                   | 2.4.1 Characteristic of Aluminum                | 10 |  |

**`**.

|           |      | 2.4.2 Weldability of copper alloy                   | 10 |
|-----------|------|-----------------------------------------------------|----|
|           | 2.5  | APPLICATION OF FRICTION-WELDED COPPER               | 12 |
|           |      | TO ALUMINUM                                         |    |
| CHAPTER 3 | MET  | HODOLOGY                                            |    |
|           | 3.1  | SPECIMEN                                            | 13 |
|           | 3.2  | SPECIMEN PREPARATION                                | 14 |
|           |      | 3.2.1 Cutting the Specimen                          | 14 |
|           |      | 3.2.2 Surface preparation                           | 15 |
|           | 3.3  | WELDING PROCESS                                     | 15 |
|           |      | 3.3.1 Theories of Friction Weld                     | 16 |
|           |      | 3.3.1.1 Preparation on the friction welding machine | 16 |
|           |      | 3.3.1.2 Procedure involve in friction welding       | 17 |
|           | 3.4  | FRICTION WELDING DATA                               | 19 |
|           |      | 3.4.1 Forging pressure                              | 19 |
|           |      | 3.4.2 Heating pressure                              | 20 |
|           |      | 3.4.3 Heating time                                  | 20 |
|           |      | 3.4.4 Forging time                                  | 21 |
|           |      | 3.4.5 Optimum parameter                             | 21 |
|           | 3.5  | REMOVING THE FLASH                                  | 21 |
|           | 3.6  | PREPARATION FOR NON-DESTRUCTIVE TEST                | 22 |
|           |      | (NDT) AND DESTRUCTIVE TEST (DT)                     |    |
|           |      | 3.61 Visual Inspection                              | 22 |
|           |      | 3.62 Radiography test                               | 23 |
|           |      | 3.63 Tensile test                                   | 23 |
|           |      | 3.64 Bending test                                   | 24 |
|           |      | 3.65 Microstructure test                            | 24 |
| CHAPTER 4 | RESU | JLT                                                 |    |
|           | 4.1  | COMPOSITION OF COPPER AND ALUMINUM                  | 27 |
|           | 4.2  | FORGING PRESSURE                                    | 28 |
|           | 4.3  | HEATING PRESSURE                                    | 30 |
|           |      |                                                     |    |