RIVER WATER QUALITY ASSESSMENT OF SELECTED HEAVY METALS IN SUMBAL MIGHU AND SUMBAL LANGAT

NURASHIKIN BINTI MOHMAD

BAGHELOR OF ENVIRONMENTAL HEALTH AND SAFETY (HONORS) FAGULTY OF HEALTH SQLENGES UNIVERSITE TERNOLOGI MARA

MAY 2010

ABSTRACT

This study was conducted to assess the extent of heavy metals pollution in the Michu River and Langat River. A total of 7 monitoring stations were established along the Michu River and the section of Langat River. Surface water samples (n=94) were collected from the closed Ampang Landfill after 11 years of closure until the downstream route of the Langat river near the Puncak Niaga Water Treatment Plant. Samplings were conducted three times over a period of 3 months from October 2009 to December 2009 during different season (dry and rainy day). The statistical analysis shows significant different (P<0.05) between Cd,Cu and Zn except Pb with different season. Water quality parameters such as temperature, turbidity, pH, conductivity and suspended solid were monitored to determine their status in relation to the health of the river ecosystem. The results were then compared where possible to the Standard A, Regulation Effluent Discharge, 1979, EQA. There have violation of Pb during both season and it present most at each sampling points. But the Cd most present and violate during rainy day compared than hot day. The Atomic Absorption Spectrometer (AA400) Pelkin Elmer techniques were employed for the determination of selected heavy metals in the samples. Elemental concentrations of Cd,Pb,Cu and Zn were measured. The trends of selected heavy metals and statistical analysis of the results were obtained. The trends of heavy metals in water of the Michu River and Langat River is Pb>Cd>Cu>Zn. Correlations exist between selected heavy metals and its physical factors. The secondary data for treated water (Puncak Niaga Water Intake Point) was collected from Health District office for determine the potential health effects among the community at study area. About 200 questionnaires was sent to the community at Michu River Village (case study) and Puncak Alam (control study) to determine the association between risk factor and disease status and thus epidemiology risk assessment developed. There are association between respondent and drinking water and health symptoms when the (p Value < 0.05).

TABLE OF CONTENTS

CONTENT	PAC	GΕ
TITLE PAGE	i	
ACKNOWLEDGEMENT	ii	
ABSTRACT	iii	
ABSTRAK	iii	
TABLE OF CONTENTS	iv	
LIST OF TABLES	vi	
LIST OF FIGURES	vii	
LIST OF APPENDICES	xii	
LIST OF ABBREVIATIONS	xvi	
CHAPTER 1: INTRODUCTION		
1.0 Background	1	1
1.1 Problem Statement		2
1.2 Study Justification		2
1.3 Study Objectives		3
1.3.1 General Objective		3
1.3.2 Specific Objectives		3
1.4 Study Hypothesis		3

1.5 Conceptual Framework	5
CHAPTER 2: LITERATURE REVIEW	
2.1 Sources of River Water pollution	6
2.2 Effect of Land Use Activity	6
2.2 Heavy metal	6
2.2.1 Cadmium	6
2.2.2 Lead	7
2.2.3 Copper	8
2.2.4 Zinc	9
2.3 Standard & Regulations	10
CHAPTER 3: METHODOLOGY	
3.1 Background	11
3.2 Study location	12
3.2.1 Michu River & Langat River	12
3.2.2 Ampang Jaya Landfill Site (Selangor)	12
3.2.3 Puncak Niaga Water Treatment Plant	13
3.3 Study Design	14
3.4 Study Variables	14

3.5 Sampling		14
	3.5.1 Sample Size	14
	3.5.2 Sampling Procedure	15
	3.5.3 Sample selection	15
3.6 Instrument		16
	3.6.1 Base Line Data	16
	3.6.2 Water Sampling	16
	3.6.3 Water Sampling Procedure	16
	3.6.3.1 Pre sampling	16
	3.6.3.2 Water Quality Sampling	16
3.7 Water Sampling Analyzed		17
3.8 St	atistical Test	17
3.9 Ep	pidemiology Risk Assessment	18
3.10 Questionnaires		18
3.11 Inclusive and Exclusive Criteria		19
3.12 Quality Control		19