UNIVERSITI TEKNOLOGI MARA

COMPARISON ON BANANA PEELS, SUGARCANE BAGASSE AND THEIR COMBINATION AS BIOSORBENT FOR NICKEL, COPPER AND CADMIUM IN WATER SAMPLES AT TASIK IHLAM UITM PERLIS

AMNI AFAF BINTI AMIR HAKIM

Thesis submitted in fulfilment of the requirements for the degree of Bachelor of Science (Honours) Biology

Faculty of Applied Sciences

July 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Amni Afaf Binti Amir Hakim
Student I.D. No.	:	2016589447
Programme	:	Degree in Biology (Hons.) – AS201
Faculty	:	Applied Science
Thesis Title	:	Comparison on Banana Peels, Sugarcane
		Bagasse and Their Combination as
		Biosorbent for Nickel, Copper and
		Cadmium in Water Samples at Tasik
		Ihlam Uitm Perlis

Signature of Student	:	
Date	:	July 2019

ABSTRACT

The massive amount of biomass byproduct will turn into lignocellulosic biomass and harm the environment. In this study, the potential of biomass byproduct to absorb heavy metal ions in Tasik Ihlam is studied. This study area was chosen due to lots of students activity had been carried out from some streams flowing into the lake through a drain. Three potential biosorbents which are banana peels, sugarcane bagasse and their combination were evaluated using ICP-OES and FTIR. The adsorbents were soaked in water samples within 1 to 2 hours and their concentration of metal ions were recorded before and after the adsorption process. For TI 1, TI 2 and TI 3 while using combination as adsorbent showed the amount concentration of Cu²⁺ before treatment are 1.8, 0.055, and 0.195 g/ml respectively. After adsorbent was applied the concentration of Cu^{2+} has decrease to 0.131, 0.0093, and 0.0205 g/ml respectively. From FTIR result, shows that spectra bands in banana peels assigned to phenol, xyloglucan, pectin and cellulose that lies at 1430, 1078, 1014, and 900 cm⁻¹ respectively. While, the spectra for sugarcane the bands were observed for phenolic ring, arabinose, pectin and cellulose at 1630, 975, 1014 and 1060 cm⁻¹ respectively. All these functional group has high ability in adsorbed metal ions. The result shows that combination is the most effective adsorbent due to high surface of active sites was evaluated using percentage of removal efficiency and paired T-test. However for the monolayer adsorption banana peels is the most effective compare to sugarcane bagasse and combination was evaluated using Langmuir and Freundlich isotherm. This study would provide greater benefits for the community and government to solve the accumulation of heavy metals pollutant and biomass through cheaper and environmental friendly biosorption process.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABSTRAK	V
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES LIST OF SYMBOLS	x xi
LIST OF ABBREVIATION	xii
LIST OF NOMENCLATURES	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Significant of Study	2
1.4 Objectives of Study	3
CHAPTER TWO: LITERATURE REVIEW	4
2.1 Heavy Metals in Wastewater	4
2.2 Adsorption Using Biological Wastes	6
2.3 Composition of Banana Wastes Aids in Removal of Heavy Metal	8
2.4 Sugarcane Bagasse as Potentially Low-Cost Biosorbent	11
CHAPTER THREE: RESEARCH METHODOLOGY	13
3.1 Study Area	13
3.2 Methodology	16

3.3 Flow Chart	19
CHAPTER FOUR: RESULTS AND DISCUSSIONS	20
4.1 FTIR Analysis	20
4.2 Percentage of Removal Efficiency	21
4.3 Langmuir Adsorption Isotherm	28
4.4 Freundlich Adsorption Isotherm	31
4.5 Paired T-test	34
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	
REFERENCES	35
APPENDICES	37
	45