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ABSTRACT

Fuzzy time series has been used to model observations that contain
multiple values. This paper proposes the t-norm of Yager class of
subsethood defuzzification to forecast university enrolments based
on fuzzy time series and the data of historical enrolments which are
adopted from Song and Chissom (1994). The proposed method
applied seven and ten interval with equal length and the max-product
and max-min as the composition operator in the fuzzy relations
F(t)= F(t-l)oR(t,t-J). The result shows that the t-norm of Yager
class of subsethood defuzzification models with (10, max-product)
is the best forecasting method in terms of accuracy. The proposed
method has also improved the forecasting results by previous
researchers.

Keywords: forecasting enrolments, t-norm of Yager Class,
subsethood defuzzification, max-min composition, max-product
composition

Introduction

The fuzzy set theory was originally developed to handle problems involving
human linguistic terms, for example, hot, warm, cool and cold for
temperature and short, medium and tall for height. In economic
forecasting, the classical time series method cannot deal with forecasting
problems in which the values of time series are linguistic terms represented
by fuzzy sets. In view to this, Song and Chissom (1993) proposed a
special dynamic process called fuzzy time series to overcome the
drawback of the classical time series methods. In this application of
fuzzy time series, Song and Chissom (1993; 1994) used two models to
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forecast students' enrolments in the University of Alabama by fuzzifying
the historical data. Since then, several other studies have been carried
out. However, there are still many critical issues pertaining to Song and
Chissom's methods. Undoubtedly, the determination of defuzzification
principles is one of these issues.

In the early days, defuzzification problem never had the chance to
be formally defined or analysed (Oliveira 1995). Nowadays, many
different studies on it have been developed. Defuzzification is the process
to select an appropriate crisp value based on a fuzzy set in such a way
that the selected crisp value may represent the fuzzy set. This step is
necessary in most applications of fuzzy systems. For example, the output
of fuzzy controllers must be in the defuzzified form since mechanical,
electrical, pneumatic and other actuators can only accept and use these
deterministic signals.

Song and Chissom (1993) combined two defuzzification principles:
the mean of maxima (MOM) and the centre of area (COA) in their
research. In 1994, Song and Chissom applied a three-layer back
propagation neural network to convert the output of the variant model.
Inspired by Song and Chissom's approach, Song and Leland (1996)
proposed the concept of the optimal defuzzification mapping and used
Song and Chissom's time variant fuzzy time series model to forecast the
university enrolments. An adaptive learning of the optimal defuzzification
mapping is developed to find the optimal parameters. Besides, research
findings of Nazirah and Abu Osman (2000) also indicated that the number
of intervals and the defuzzification techniques could influence the
forecasting results. In their study, the universe discourse is divided into
seven and ten intervals with equal length. Fuzzy intervals with
defuzzification requirement (reasonable but not necessary (RNN)) is
applied to obtain the result occurred at the maximum value of the
membership function.

In other related study, Tsaur et al. (2005) proposed the concept of
entropy to measure the degree of fuzziness and modified Song and
Chissom's time invariant fuzzy time series model to forecast the university
enrolments. The fuzzy output is defuziffied by using combined principle
as in Song and Chissom's (1993). Nazirah and Abu Osman (2006)
proposed the concept of subsethood defuzzification with algebraic product
t-norm f.!(x; )x; to forecast the university enrolments. They applied max
min and max-product composition operator in the fuzzy
relation F(t) = F(t - I) 0 R(t, t - I).

2



T-Norm of Yager Class ofSubsethood Defuzzification

This paper attempts to approach the forecasting issue by proposing
the t-norm of Yager class,

in the subsethood defuzzification indicated in the study by Nazirah and
Abu Osman (2006). The proposed method applied seven and ten interval
with equal length and the max-product and max-min as the composition
operator in the fuzzy relations, F (t ) = F (t -1) 0 R(t, t -1)

The analysis shows that the t-norm of Yager class of subsethood
defuzzification with (l0, max-product) is the best forecasting method in
terms of accuracy. The proposed method wiIl also improve the forecasting
results by other previous researchers.

Preliminaries

In 1965, Lotfi Zadeh proposed the idea of fuzzy set for dealing with the
vagueness type of uncertainty (Wang 1997). A fuzzy set A defined on
the universe X is characterised by a membership function such that
J..l A : X ~ [0, 1]. The nearer the value of J..l(x) is unity, the higher the

grade of membership of x in A.

Intersection of Fuzzy Subsets: T-Norms (Triangular Norms)

Triangular norms (briefly t-norms) are an indispensable tool for the
interpretation ofthe conjunction in fuzzy logics and subsequently, for the
intersection of fuzzy sets. A t-norm is a binary operation t on the unit
interval [0, 1] which is commutative, associative, monotone and has 1 as
the neutral element, that is, it is a function t: [0, 1] x [0, 1] ~ [0,1] such
that for all a, b, C E [0, 1]:

Axiom tl:

Axiom t2:

Axiom t3:

Axiom t4:

tea, b) = t(b, a),

t[t(a, b),c] = t[a, t(b, c)],

tea, b) ~ tea, c) for b ~ c,

t(a,l)=a.
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Subsethood Defuzzification

The subsethood defuzzification (SD) is based on sigma-count
measurement and mean value theorem (Oliveira 1995). The SD coincides
with the unifying structure of fuzzy set theory, that is, parallel with
accordance to the Kosko's subsethood theorem (Kosko 1992).

Without the loss of generality, the universe discourse is normalised
to X = [0, I]. For a given fuzzy set A, the averaging defuzzification in

M p(AnM A )

terms of set measures is given by x = M (A) where the sigma-
p

count measure of a set denoted as:

M p (X) = ~Il p x (XI) +K + Il P" (x,,) , the mirror set of support A is

"
expressed as M A= L IlM (xJ / Xi and Il M(Xi) == Xi' The intersection

i=1

of fuzzy sets A and M A denoted as A (\ M A , is defined as

IlAnM
A
(x) = Il A(x) t Xi where t is a triangular norm. From the averaging

defuzzification, the SD method can be written as:

"
p L (IlA (xJt x}]

i=1
XSD = ---'---,=====---

"
p L Il P

A (xJ
i=1

where for i = 1, 2, .. .n, Il A (Xi) is the

degree of the membership of the i-th element in the support of A.

Enrolment Forecasting

Song and Chissom (1994) developed a time-variant fuzzy time series
model to forecast students' enrolment in the University of Alabama. A
three-layer neural network was applied to defuzzify the output of the
fuzzy time series model. In 2006, Nazirah and Abu Osman proposed the
subsethood defuzzification with t-norm of algebraic product to approach
issues on students' enrolment forecasting at the University of Alabama.

The following section will show that the subsethood defuzzification
with t-norm of Yager class yields better than the forecast result by other
researchers mentioned before. The enrolment forecasting using the fuzzy
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time series (Song and Chissom 1994) with the t-norm of Yager class
subsethood defuzzification is described step by step as follows.

Seven and ten equal intervals are used along with the max-min and
max-product composition operator.

Step 1: Define the universe of discourse U within the historical data.
Let U = [13000, 2000] and for seven and ten equal intervals, the length
is 1000 and 700 respectively.

Step 2: Ten or seven (based on the number of equal interval) linguistic
value must be determined to define fuzzy sets on the universe U. The Ai
(i = 1,2,3, ... ) are the possible linguistic values of enrolment. For ten
intervals, each Ai is defined by the intervals u1' u

2
' u

3
' ••• , u

lO
as follows:

AI = l/u 1 + 0.S/u2 + 0/u3 + 0/u4 + ... + 0/u
9

+ O/u IO

A2 = 0.S/u 1 + l!u2 + 0.S/u3 + 0/u4 + + 0/u
9

+ O/u IO

A3 =0/u 1 + 0.S/u2 + lIu
3

+ 0.S/u4 + + 0/u
9

+ O/u
IO

A9 =O/u, + 0/u2 + 0/u
3

+ 0/u4 + + 0/u
7

+ O.S/ug+ lIu
9

+ O.S/u IO

A IO =O/u l + 0/u2 + 0/u3 + 0/u4 + + 0/u7 + O/Ug + 0.S/u
9

+ l!u
lO

Table J: The Fuzzified Historical Enrolments (Ten Intervals)

Year

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

Actual enrolment

13055
13563
13867
14696
15460
15311
15603
15861
16807
16919
16388
15433
15497
15145
15163
15984
16859
18150
18970
19328
19337
18876

5

Fuzzified enrolment



Jurnal Gading

Step 3: Choose a model basis w =4 and at a given time t, calculate the
fuzzy relation

RW(t,t -1)= fT (t - 2)x f(t -I)u fT (t -3)xf(t - 2)uK fT (t - w)xf(t - W+ 1)

and fuzzy forecasted F(t)= F(t -I) oR(t,t -I) where 0 is the max-min and

max-product composition.

Step 4 : Interpret the forecast outputs. By using the SD with t-norm of

Yager class, tw (fl(XJ X;} = l-min[I,((t-fl(X;})'" +(t-xJ"~] ,

the forecast enrolment can be written as

"
p L,flP (Xi)

;=1

Applying the above principles, the predicted enrolments are tabulated
in Table 2 and shown in Figures I and 2.

Results

The following table shows the forecasting results of four different pairs
of interval and composition operator.

Table 2: Forecast Enrolments Using T-Norm of Yager Class of Subsethood
Defuzzification

Year (10, max- (10, max- (7, max- (7, max- Actual
min) product) min) product) enrolments

1975 15151 15169 15168 15168 15460
1976 16002 16065 15762 15459 15311
1977 15452 15450 15524 15262 15603
1978 15452 15450 15936 15936 15861
1979 16807 16805 15936 15936 16807
1980 17275 17702 16924 16924 16919
1981 16852 16850 16630 16630 16388
1982 16852 16850 16988 16988 15433
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1983 17275 1W>5 16924 16924 15497
1984 15457 15450 16454 16454 15145
1985 15452 15450 15936 15936 15163
1986 15452 15450 15936 15936 15984
1987 168(JJ 16805 15936 15936 16859
1988 17275 17702 16924 16924 18150
1989 19091 18576 19242 18778 18970
1990 19552 19550 18850 18850 19328
1991 19552 19701 19242 19242 19337
1992 19649 19650 19212 19212 18876
1993 19649 19650 19212 19212

(w,p) (1.41,45) (1.52, 10) (1.55, I) (1.55,1)
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Figure I: Forecast Enrolments and Actual Enrolments (Ten Intervals)
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Figure 2: Forecast Enrolments and Actual Enrolments (Seven Intervals)
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Discussions

In this study, the t-norm of Yager class of subsethood defuzzification is
presented to forecast university students' enrolments based on fuzzy
time series. The historical data are adopted from Song and Chissom
(1994). The forecast enrolment in Step 4 is calculated for w E (0, 00)
and 1 :<:::; p:<:::; 50 using Mathcad software. It is quite difficult to find w with
the best forecasting model since there is no obvious pattern between the
forecasting error and p. However, after numbers of effort in trial and
error, finally the value of w with the best forecasting enrolments (Table
2) is found. The best forecast enrolments (with the smallest forecasting
errors) for (10, max-product) and (l0, max-min) occurred at (w = 1.51,
p =45) and (1.52, 10) respectively. However, for (7, max-product) and
(7, max-min), the best forecasting occurred at the same point (l.55, 1).

The accuracy of this forecasting method as proposed in the model is
measured by using four criteria namely mean absolute deviation (MAD),
mean square error (MSE), root mean square error (RMSE) and mean
absolute percentage error (MAPE).

Table 3: Comparison of Performance Indicator for the Proposed Methods

(10, max-product)

(10, max-min)

(7, max-product)

(7, max-min)

MAD

456.83

498.33

574.22

580.94

MSE

311268.83

456706.11

586458.11

592490.17

RMSE

557.91

675.80

765.81

769.73

MAPE

2.77

3.06

3.52

3.56

Among the forecast enrolments with ten intervals, the max-product
composition operator has the best accuracy since its MSE, RMSE, MAD
and MAPE are the lowest. For the seven intervals with equal length, the
max-product composition operator is also the best forecasting model
since all the forecasting errors are the smallest. However, the difference
in errors between (7, max-product) and (7, max-min) is very small and
16 out of 19 (84.2%) forecast enrolments show the same results. This
indicates that there is no difference in the forecasting results between
(7, max-product) and (7, max-min).
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Figure 3: Comparison of RMSEs for the Proposed Methods

Based on the results in Table 3 and Figure 3, it is obvious that the t
norm of Yager class of the subsethood defuzzification with (10, max
product) is ranked first followed by (l0, max-min), (7, max-product) and
(7, max-min).

Table 4: Comparison of RMSEs with Various Models

Song& Song Nazirah & Yu Nazirah & Proposed
Chissom Leland Abu Osman (2005) Abu Osman method
( 1994) ( 1996) (2000) (2006) (10, max-

product)

RMSE 880.73 796.36 883.25 1020.38 765.57 557.91

1200

1000

\.ol
800

r.r.J
600

~
400

200

0

1994 1996 2000 2005 2006 (10, max-

product)

Song & Song & Nazirah & Yu Nazirah & Proposed
Chissom Leland Abu Osman Abu Osman method

Forecasting Models

Figure 4: Comparison of RMSEs with Various Models
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Table 4 compares the RMSE of different forecasting models with
the proposed method (10, max-product). From Table 4 and Figure 4, it
can be seen that the root mean square error (RMSE) for the proposed
method (10, max-product) is 557.91 and this is better than 880.73 in
Song and Chissom (1994), 796.36 (Song & Leland 1996),883.25 (Nazirah
& Abu Osman 2000), 1020.38 (Yu 2005) and 765.57 (Nazirah & Abu
Osman 2006). It shows that the proposed method with (10, max-product)
outperforms the models by Song and Chissom (1994), Song and Leland
(1996), Nazirah and Abu Osman (2000), Yu (2005) and Nazirah and Abu
Osman (2006).

Conclusion

This study proposes the t-norm of Yager class ofsubsethood defuzzification
to forecast university students' enrolments based on fuzzy time series
and the data of historical enrolments were adopted from Song and
Chissom (1994). The model with (10, max-product) is the best forecasting
method compared to (10, max-min), (7, max-product) and (7, max-min).
The (10, max-product) models has also improved the forecasting results
by Song and Chissom (1994), Song and Leland (1996), Nazirah and Abu
Osman (2000), Yu (2005) and Nazirah and Abu Osman (2006).

The difficulty of finding the relationship between p and the average
forecasting error is one of the problems in this study. In order to overcome
this shortcoming, it is suggested genetic algorithms to be applied in the
future studies (Day 1995, as cited in Hwang 1998).
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