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ABSTRAct

Presently, there are many. science and engineering problems
described in mathematical models. The solutions to these problems
can be obtained analytically or numerically. Thus, the aim of this
paper is to assess the water quality model using full- and half-sweep
finite-difference approximation equations. The 2, 3 and 4-point of
Full-Sweep Explicit Group (FSEG) and Half-Sweep Explicit Group
(HSEG) iterative methods together with the Red-Black (RB) ordering
strategy were also presented to solve the systems of linear equations.
Finally, a number of numerical experiments were conducted in order
to show the effectiveness of the HSEG methods with RB ordering in
computing numerically.
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Introduction

The numerical techniques such as the finite difference, finite element,
finite volume and boundary methods have been used by many researchers
to gain approximate solutions. Those methods are some of the most
efficient approximate techniques for solving a wide variety of science
and engineering problems. This paper focuses on the effectiveness of
using the full- and half-sweep finite difference approximation solver by
using the Explicit Group (EG) iterative method (Yousif 1984; Evans 1985;
Arsmah 1993). Besides EG iterative methods, two ordering strategies;
lexicography (NA) and red-black (RB), are considered in solving any
system of linear equations. This is because the combination of iterative
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schemes and ordering strategies, which have been proven, can accelerate
the convergence rate (see Parter 1988; Evans & Yousif 1990; Zhang
1996).

Let us consider the water quality model given as

subject to the initial condition

C(x,O) = Po (x), a ~ x ~ b

and the boundary conditions

qa, t) = PI (t )'}

()
,t~O

qb,t) = P2 t ,

where,

xE[0,I],t21. (I)

U = Mean velocity (m1s)
E = Dispersion coefficient (m2/s)
x = Distance downstream (m)
t = Time (s)
C = Concentration of Dissolved Oxygen (DO) (mg/ l)

To facilitate in formulating the full- and half-sweep finite difference
approximation equations for problem (1), we shall restrict our further
discussion in the next sections onto uniform node points only. Therefore,
we assume the solution domain (1) can be uniformly divided into
m = 2P , P ~ 2 and R subintervals in the x and t directions. The
subintervals in the x and t directions are denoted LU and !'1t respectively,
which are uniformed and defined as

LU = (b-a) = h,
m

!'1t = (T-O)
R
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The Half-Sweep Crank-Nicolson Finite Difference
Approximation

Referring to Figure 1, the finite grid networks show the distribution of
uniform node points to be considered in implementing the half- and full
sweep iterative methods. Before further explanation on the implementation
of iterative process, the ha1f- and full-sweep iterative methods will be
used to compute approximate values onto node points of type only until
the convergence criterion is reached. Then solutions of the other remain
points are computed directly (see Abdullah 1991; Ibrahim & Abdullah
1995; Yousif & Evans 1995; Abdullah & Ali 1996).
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Figure I: (a) and (b) Shows the Distribution of Uniform Node Points for the
Full- and Half-sweep Cases, Respectively

Using the 8 iterated scheme, the general approximation equation
for problem (l) can be written as

-(a8 + f38)Ci_I,j+1 + (l + 2(8)Ci,j+1 - (a8 - f38)Ci+1,j+1 = fJ+1 (3)

where,

fJ+1 = (a(l-8) + f3(l-8nCi_l ,j+ (l-2a(1-8n CiJ - (a(l-8) -f3(l-8nCi+IJ
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. 1
The values of e In Eq. (3), correspond to 0, 1, and -, represents

2
the expilicit (classical), fully implicit and the Crank-Nicolson (CN)

schemes, respectively. It can be shown that the truncation errors for

each scheme are O((LU? + (L1t )), O((LU? + (M )), and O((LU1+ (M1),
respectively. In this paper, the CN scheme is mainly considered due to

its high accuracy. Similarly using the same way to derive Eq. (3) and by

substituting e= 1 ,we can express full- and half-sweep CN approximation

equations as stated in the following equation

where,

- Ci-1,J+l + PCi,J+1 - </JCi+1,J+l = ~(J+l (4)

EM
11=---

2(phJ'
utJ.t

U=--
4(ph)'

1+ 211 11- U
p= ,</J = ,

11+ u 11+ u

/;~J+I = Ci-1,J + rCi,J + </J Ci+I,J

The values of p, which correspond to land 2, represents the full
and half-sweep cases respectively. Thus, the computational molecule
for equation (3) is shown in Figure 2 and the corresponding system of
linear equations can be stated as

where,

AC=b

p -<1>

-1 p -<1>

A=

(5)

f
- J+l

-1 P

-1
-<1>

p (((; fP }l(; fP )J
f2*p,J+' f;-p,J+l + <1>Cm ,J+J
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I-II ItS"

Figure 2: Computational Molecule of the Full- and Half-sweep CN Finite
Difference Approximations for Problem (I)

The Half-Sweep Explicit Group Iterative Methods

In this paper, the approximate solutions of the system oflinear equations
are restricted to the 2, 3 and 4-point block schemes.

The 2-Point FSEG and HSEG Schemes

Considering Figure 2, the 2-Point FSEG and HSEG schemes using Eq.
(4) generally can be shown as (Yousif 1984; Arsmah 1993),

where,

[
P - <1>][ Ci,J+I] [SI]

-1 P Ci+fJ,J+1 - S2
(6)

Determining the inverse matrix of the coefficient system, (6), both
schemes can generally be written as

[ Ci,J+1 ] 1 [p <1>][SI]
Ci+fJ,J+1 = p2 - e 1 p S2

The 3-Point FSEG and HSEG Schemes

(7)

These schemes involve a pair of three points accordingly in order to
generate a system oflinear equations, (3 x 3). From Eq. (4), both schemes
can be represented in the following system of linear equations
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r
Ci,}+I] 1fP2 - <1>

Ci+p,}+1 = P
C i+2p,}+1 \jI 1

where,

(8)

To reduce the complexity ofcomputations in system (8), the technique
of doing one computation and its value stored in one variable will be used
into the system. As a result, the value can be used repeatedly for other
computations (see Jumat and Abdul Rahman 1998). Generally the
implementation of the system can be represented as follows,

Ci,}+1 = <1>Sa +){
Ci+p,}+1 = pSa

C i+2p,}+1 = Sa +S~

where,

The 4-Point FSEG and HSEG Schemes

(9)

By using the same way to formulate scheme (9), it can be shown that
the 4-Point FSEG and HSEG are stated as

Ci,}+1 pV2 <1>vI <1>2p <1>3 SI

Ci+p,}+1 VI PV 1 <1>p2 <1>2p S2

C i+2p ,}+1 \jI P p2 PV I <1>VI S3 (0)

C i+3p,}+1 1 P VI pV2 S4
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where,

S) = J;~)+) + U i _ p,)+), S2 = J;:p,)+I'

S3 = fi:2p,)+) , S4 = J;:3p,)+1 + <1>U i+4p ,)+)'

Referring to Eq. (10), its coefficient matrix can be separated into
two parts by a dot line. Applying the same technique as mentioned in the
previous section, generally both methods can be implemented iteratively
as follows

where,

Ci ,)+) = <1>Sa + VaS)

Ci+p,)+1 = pSa + VbSI

C i+2p,)+1 = pSb + <1>V bS4

C i+3p,)+1 = Sb + VaS4

(11)

va =P~2- 2<1> Y'V , Vb =~2- <1> Y'V ,
Sa = (~2 - <1> ~2 + (<1>P)53 + (<1>2)54 )/'1', Sb = (SI + pS2 + ~2 - <1> ~J/'V,

In this section, two ordering strategies such as lexicography (NA)
and red-black (RB) are carried out. Consequently, the application of the
RB strategy applied into the FSEG and HSEG iterative methods will be
indicated as FSEG-RB and HSEG-RB methods, repectively. The location
of numbers Ip, 2p, 3p, ... , m-p shows how the implementation of full
and half-sweep iterative methods either by using the NA or RB ordering,
where it can be computed by starting at number 1 and ending at number
m-p, see Figures 3 and 4.
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Figure 3: (a) and (b) Shows the NA and RB Ordering Strategies Respectively
in the Full-sweep Case

(a)

(b)

Figure 4: (a) and (b) Shows the NA and RB Ordering Strategies Respectively
in the Half-sweep Case

Computational Experiments

To indicate the effectiveness of the numerical assessment using the full
and half-sweep finite difference approximation equation in (5), there are
three parameters considered in numerical comparison such as the number
of iterations, execution time and maximum absolute error. In this section,
the following is a water quality model stated as

XE [0,1], t ~ I. (12)

Then boundary conditions and the exact solution of the problem (12)
were defined by
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(13)o~ x ~ 1, t ~ 1.
(

-(X-VI? J
C( )

_ 500 ~
x,t - ,...-;::;: e ,

2 vnEt

All the results of numerical experiments, obtained from implementation
of the GS, 4 Point FSEG-RB and HSEG-RB methods, are recorded in
Table 1. In the implementation mentioned above, the convergence test
considered the tolerance error £ =10-10

. Figures 5 and 6 show the
number of iterations and the execution time versus mesh size.
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Figure 5: Number of Iterations Versus Mesh Size of the 4 Point FSEG-RB and
HSEG-RB Methods
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Figure 6: The Execution Time (seconds) Versus Mesh Size of the 4 Point
FSEG-RB and HSEG-RB Methods
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Table 1: Comparison of Number of iterations, the Execution Time (Seconds)
and Maximum Errors for the Iterative Methods

a = 0, b = I, R = 100, T = 0.0488,

h- I = 128,256,512,1024,2048,4096, I; = 10-10

No. of Iterations

Methods Mesh size

64 128 256 512 1024 2048

CE 496 1844 6915 25902 96659 358915
2-FSEG-RB 257 952 3568 13387 50066 186395
3-FSEG-RB 178 649 2425 CXJJ7 34056 126967
4-FSEG-RB 139 496 1845 6916 25905 96666
2-HSEG-RB 73 257 952 3568 13387 50066
3-HSEG-RB 54 178 649 2425 CXJJ7 34056
4-HSEG-RB 44 139 496 1845 6916 25905

Execution time (Seconds)

Methods Mesh size

64 128 256 512 1024 2048

CE 0.31 2.23 16.52 121.25 923.07 6840.65
2-FSEG-RB 0.25 1.54 11.32 82.96 639.66 4923.53
3-FSEG-RB 0.17 1.11 7.84 58.40 444.35 3468.46
4-FSEG-RB O.LO 0.49 3.57 25.95 197.70 1493.57
2-HSEG-RB 0.06 0.19 1.34 9.74 76.58 578.54
3-HSEG-RB 0.04 0.13 0.85 6.29 49.72 375.01
4-HSEG-RB 0.02 0.12 0.55 3.90 29.05 218.90

Maximum Absolute Errors

Methods Mesh size

64 128 256 512 1024 2048

CE 2.65ge-5 1.13ge-5 2.110e-5 2.446e-5 2.902e-5 4.506e-5
2-FSEG-RB 2.66Oe-5 1.135e-5 2.093e-5 2.380e-5 2.637e-5 3.445e-5
3-FSEG-RB 2.66Oe-5 1.134e-5 2.088e-5 2.358e-5 2.54ge-5 3.092e-5

4-FSEG-RB 2.66Oe-5 1.133e-5 2.085e-5 2.346e-5 2.505e-5 2.9100-5
2-HSEG-RB 1.781e-4 2.66Oe-5 1.135e-5 2.093e-5 2.380e-5 2.637e-5
3-HSEG-RB 1.781e-4 2.66Oe-5 1.134e-5 2.088e-5 2.358e-5 2.54ge-5

4-HSEG-RB 1.781e-4 2.66Oe-5 1.133e-5 2.085e-5 2.347e-5 2.505e-5
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Conclusion

The findings in Figures 5 and 6 show that the number of iterations and
the execution time for the 4 Point HSEG-RB have declined by 68.34 
73.32% and 75.51 - 85.34%, respectively compared with the 4 Point
FSEG-RB method. Thus, the HSEG-RB methods are far better than the
FSEG-RB method in terms of a number of iterations and the execution
time. This is attributed to the computational complexity of the HSEG
RB methods, which is 50% less than the FSEG-RB methods.

In terms of the half-sweep approximation equations, the 4 Point
HSEG-RB is the best scheme among the HSEG methods. For instance,
the 4 Point HSEG-RB method has reduced its number of iterations and
the execution time by 18.51 - 23.97% and 36.84 - 66.66% respectively
compared with the 2 Point HSEG-RB method.
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