UNIVERSITI TEKNOLOGI MARA

DIABETES PREDICTION SYSTEM USING CLONAL SELECTION ALGORITHM

NOR AISHAH BT MUSTAPA

Thesis submitted in fulfillment of the requirement for

Bachelor of Computer Science (Hons)

Faculty of Computer and Mathematical Sciences

JANUARY 2012

DECLARATION

I certify that this thesis and research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practiced of discipline.

JANUARY 31, 2012

NOR AISHAH BINT MUSTAPA

2009179011

ABSTRACT

Diabetes Prediction system using clonal selection algorithm is available to test whether patients suffering from diabetes or not. The data included in the system is a tested and accurate data. Previously, the process of testing a patient suffering from diabetes tested manually. Results received by the patient are very slow and ineffective. Therefore, this system is established to help the hospital to reduce the time taken for each patient knows their decision.

There are many techniques that can be used to make prediction process but the technique that has been selected to be used for this system is Artificial Immune System. Artificial Immune System has three types of selection that can be used such as clonal selection, network selection and negative selection.

The prediction is done using Artificial Immune System technique where some of applicant's information is taken to predict and see whether they are predicted having diabetes or not. The first purpose for this prototype is to create or make prediction of some data to measure the accuracy rate that either with similar accuracy or better than manual process before this.

The result achieved after using this system may make the accuracy of prediction diabetes improved. The percentages of actual output same with the desired output is more than 80%. In the Artificial Immune System training, testing data is repeatedly done for the purpose to get the better memory cell value where it will be used to predict the future data.

Table of Content

Content	Page
DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
APPROVAL	iv
LIST OF FIGURE	vii
LIST OF TABLE	viii
CHAPTER 1	1
INTRODUCTION	1
1.1 Overview	1
1.2 Problem Statement	2
1.3 Project Objectives	3
1.4 Project Scope	3
1.5 Project Significances	4
CHAPTER 2	5
LITERATURE REVIEW	5
2.1Definition of Diabetic	5
2.2 Techniques	7
2.2.1 Artificial Immune System	8
2.3 Related Work	13
2.3.1 Artificial Immune System in Different Domain	13
2.3.2 Different Technique in prediction	17
2.4 Summary	_ 20

CHAPTER 3		21
RESEARCH METHODOLOGY		21
3.1	Research Framework	21
3.2	Theoretical Study	23
3.3	Empirical Study	25
3.3	.1 Knowledge Acquisition	25
3.4	Architecture Design	26
3.4	.1 System Design	27
3.5	Development and Evaluation	29
3.5	.1 Prototype Development	30
3.6	Documentation	33
3.7	Summary	34
СНАРТ	CER 4	35
RESUL	T AND FINDING	35
4.1	Introduction	35
4.2	Features of the Prototype	35
4.2.1	Training Network	36
4.2.2	Summary	39
CHAPTER 5		42
CONCLUSION		42
5.1	Introduction	42
5.2	Prototypes Abilities	42
5.3	Prototypes Weakness	43
5.4	Recommendations	43
5.5	Conclusion	44
APPENDIX		49
APPENDIX A		50
CI	LASS DIABETES	51
CLASS READDATA		54