Universiti Teknologi MARA

Aligned MHD Free Convection Flow of Magnetic Nanofluid over a Moving Vertical Plate with Convective Boundary Condition

Siti Nur Hidayatul Ashikin Binti Ibrahim

Report submitted in fulfillment of the requirements for Bachelor of Science (Hons.) Management Mathematics Faculty of Computer and Mathematical Sciences

June 2019

STUDENT'S DECLARATION

I certify that this report and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

.....

SITI NUR HIDAYATUL ASHIKIN BINTI IBRAHIM 2016537793

JUNE 21, 2019

ABSTRACT

The present study investigates the behaviour of aligned magnetohydrodynamic (MHD) free convection flow of magnetic nanofluids over a moving vertical plate by considers two types of the mixtures of magnetic nanofluids which were water and kerosene based magnetic nanofluids. The convective boundary conditions were taken into consideration where the right surface of the plate was in contact with the cold fluid while the left surface of the plate was in contact with the hot fluid. The similarity transformation was used to reduce the partial differential governing equations into ordinary differential equations. Then, the reduced equations was coded into Maple software and solved by using Fourth – Order Runge – Kutta Method. The results of velocity and temperature profiles were illustrated graphically while the results of skin friction coefficient and Nusselt number were presented in tabulated data. The study found that the inclination angle of magnetic field, local Grashof number, interaction of magnetic and local Biot number parameters positively influenced the velocity profiles. Conversely, as the value of inclination angle of magnetic field, local Grashof number, interaction of magnetic parameters increased, the temperature profile decreased. However, an increasing in value of nanoparticle volume fraction and local Biot number elevated the temperature profile. The numerical results revealed that the value of skin friction coefficient was the highest when the plate moved against the flow while the value of Nusselt number was the biggest when the moving vertical plate moved with the flow of magnetic nanofluids. The study also concluded that Fe_3O_4 - kerosene was the most suitable magnetic nanofluids that can be used to enhance the rate of heat transfer since the value of Nusselt number in Fe_3O_4 - kerosene magnetic nanofluids was higher than Fe_3O_4 - water magnetic nanofluids in all states of plate. Comparison of the results obtained with the results from previous study was performed to prove the consistency of the results and excellent agreement was achieved.

TABLE OF CONTENTS

CONTENTS

PAGE

SUPERVISOR'S APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	Х

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objective of the Study	4
1.4	Scope of the Study	5
1.5	Significance of the Study	5
1.6	Summary	6

CHAPTER TWO: LITERATURE REVIEW

2.1	Free Convection Flow		7
	2.1.1	Previous Study on Free Convection Flow	7
2.2	Magn	etic Nanofluid	8
	2.2.1	Previous Study on Magnetic Nanofluids	8
2.3	Convective Boundary Condition		10
	2.3.1	Previous Study on Convective Boundary Condition	10
2.4	Numerical Method		11
	2.4.1	Previous Study on Runge – Kutta Method	11

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Research Methodology Framework		
3.2	Formulation of Mathematical Model		14
	3.2.1	Governing Equations for Fluid Dynamics	15
	3.2.2	Dimensionless Governing Equation	18
	3.2.3	Skin Friction Coefficient and Nusselt Number	33
3.3	Numerical Method		35
3.4	Summary		37

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Result Analysis		38
4.2	Effect	of Dimensionless Parameters on Velocity Profile	41
	4.2.1	Inclination Angle of Magnetic Field Parameter	41
	4.2.2	Interaction of Magnetic Parameter	42
	4.2.3	Volume Fraction of Magnetic Nanoparticles Parameter	43
	4.2.4	Local Grashof Number Parameter	44
	4.2.5	Local Biot Number Parameter	45
4.3	Effect	of Dimensionless Parameters on Temperature Profile	46
	4.2.1	Inclination Angle of Magnetic Field Parameter	46
	4.2.2	Interaction of Magnetic Parameter	47
	4.2.3	Volume Fraction of Magnetic Nanoparticles Parameter	48
	4.2.4	Local Grashof Number Parameter	49
	4.2.5	Local Biot Number Parameter	50
4.4	Result	ts on Variation of Parameter in Skin Friction Coefficient	
	and N	usselt Number for Fe_3O_4 - water Magnetic Nanofluids	
	and F	E_3O_4 -kerosene Magnetic Nanofluids	52
	4.4.1	Results on Variation of Parameter in Skin Friction	