DETERMINATION OF PHENOL IN WATER SAMPLE USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

NAZURAH BINTI HARON

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Sciences (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

This Final Year Project Report entitled "Determination of Phenol in Water Sample Using High Performance Liquid Chromatography" was submitted by Nazurah bt Haron, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Nor Monica Ahmad Supervisor S. Sc. (Hons.) Chemist

B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Jamil Mohamed Sapari

Co-Supervisor

B. Sc. (Hons.) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
72000 Kuala Pilah
Negeri Sembilan

Dr. Sheikh Ahmad Izaddin bin Sheikh Mohd Ghazali Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni binti Musa
Head of Programme
B. Sc. (Hons.) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
72000 Kuala Pilah
Negeri Sembilan

TABLE OF CONTENTS

			Page	
ACK	NOWL	EDGEMENTS	iii	
TAB	LE OF	CONTENTS	iv	
LIST	OF TA	ABLES	vi	
LIST	OF FIG	GURES	vii	
LIST	COF AB	BBREVIATIONS	viii	
ABS	TRACT		X	
ABS	TRAK		xi	
СНА	PTER 1	INTRODUCTION	1	
1.1		ground of study	1	
1.2	_	em Statement	4	
1.3	Signif	icant of Study	5	
1.4	Object	tives of Study	5	
СНА	PTER 2	2 LITERATURE REVIEW	6	
2.1		ol compounds	6	
	2.1.1	•	6	
		Uses of phenols	7	
		Impacts of phenols	8	
2.2	Sample extraction procedure		9	
	2.2.1	Columns in solid phase extraction	9	
	2.2.2	Solid phase extraction development procedures	10	
2.3	High-	High-performance liquid chromatography		
	2.3.1	Mode of chromatography separation	13	
	2.3.2	Type of elution methods in HPLC	14	
	2.3.3	Ultraviolet detector	14	
2.4	Metho	Method validation		
	2.4.1	Repeatability and reproducibility	15	
	2.4.2	Linear range	15	
	2.4.3	Limit of detection (LOD) and limit of		
		quantitation (LOQ)	16	
	2.4.4	Bias/recovery	17	
СНА	PTER 3	3 METHODOLOGY	19	
3.1		Materials Materials		
5.1	3.1.1	Chemicals and reagents	19 19	
	3.1.2	Equipment and condition	19	
	3.1.3		20	
3.2		le extraction preparation	23	
2.2	Samp.	ie enduction propulation	23	

CHA	PTER 4	4 RESULT AND DISCUSSION	25	
4.1	Study	of experimental variables involved in the SPE	25	
	4.1.1	Effect of load sample volume	25	
	4.1.2	Effect of drop-rate in sample	26	
4.2	Study	of experimental variables involved in the HPLC	27	
	4.2.1	Effect of flow-rate on eluent	27	
4.3	Caliba	ration curve	30	
4.4	Metho	od validation	33	
	4.3.1	Repeatability and reproducibility	33	
	4.3.2	Limit of detection (LOD) and limit of		
		quantitation (LOQ)	34	
	4.3.3	Bias/recovery	35	
		4.3.3.1 Spiked phenol sample by direct injection	36	
		4.3.3.2 Spiked pre-treatment phenol sample using SPE	37	
CHAPTER 5 CONCLUSION AND RECOMMENDATION				
CITED REFERENCES			40 44	
APPENDICES				
CURI	CURRICULUM VITAE			

ABSTRACT

DETERMINATION OF PHENOL IN WATER SAMPLE USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Phenol as in water is harmful to living organism yet have a toxicity effect for a long-term exposure. In this research, the analysis was achieved on a C₁₈ column coupled with UV-vis detector (HPLC-UV) for determination of phenol in environmental water while by using solid phase extraction (SPE) as sample preparation technique. The optimized variable involved in SPE and HPLC were as follow: 3 mL was used for load sample volume in SPE, 45 ± 3 drops min⁻¹ was used for sample drop-rate in SPE and 0.35 mL min⁻¹ as flow-rate on eluent in HPLC. The analytical method was validated based on the following parameter: precision, linear range, limit of detection (LOD), limit of quantitation (LOQ) and bias/recovery. A good linear correlation coefficient with R² = 0.9996 was observed over the range of 0.55 - 30.0 µg mL⁻¹. Both repeatability and reproducibility (RSD, %) were 0.215 and 1.490, respectively. The limit of detection was calculated to be 0.212 µg mL⁻¹, while the limit of quantitation value of the validated method was measured to be 0.642 µg mL⁻¹. Good recoveries were between 81 - 120%. The proposed method was found to be suitable and precise for the determination of phenol in environmental water by using HPLC.