
TESSHI 2018 e-Proceedings

74	
	

	

CSCW: Designing Abstract Scripting Language for Role
Transition Management

Zainura Idrus

Interactive Computing and Communication Technology (ICCT)
Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA, Malaysia.
zainura@tmsk.uitm.edu.my

Zanariah Idrus

Faculty of Computer and Mathematical Sciences,

 Universiti Teknologi MARA, Malaysia.

zanaidrus@kedah.uitm.edu.my

Siti Nurbaya Ismail

Faculty of Computer and Mathematical Sciences

 Universiti Teknologi MARA, Malaysia.

sitinurbaya@kedah.uitm.edu.my

Siti Z.Z.Abidin

Advanced Analytics Engineering Center (AAEC)

Faculty of Computer and Mathematical Sciences

Universiti Teknologi MARA, Malaysia

sitizaleha533@salam.uitm.edu.my

N.Omar

Interactive Computing and Communication Technology (ICCT)

 Faculty of Computer and Mathematical Sciences

 Universiti Teknologi MARA, Malaysia

nasiroh@tmsk.uitm.edu.my

ABSTRACT

The nature of tasks and users in computer support collaborative work (CSCW) are
dynamic. They usually last for a short period of time and their existence is unpredictable
partly due to dynamic data. The uncertainty is suitable to be managed via role-based
management where a virtual entity called role is used as a medium between users and

TESSHI 2018 e-Proceedings

75	
	

	
tasks. Tasks are assigned directly to roles and not users. Any changes of user will have a
minimum impact to role structure. Therefore, users are independent from tasks. The
changes of role between users are called role transition and such transition must be flexible
to cater for dynamic environment. Thus, the system must support fast development and
maintenance. Even though flexibility can be in various forms, this paper supports flexibility
through scripting language where the focus is on language abstraction. To achieve the
objective, flexibility is explored and viewed from two perspectives which are system and
programming language to identify their behaviours via content analysis methods. Since
domain specific language is uniquely identified by its abstraction, it is explored in detail.
However, most abstraction languages are not abstract enough. Thus, this research has
introduced a new model of abstraction. The model introduces a new concept of plug-in and
multiple instructions per-statement to increase language abstraction. The knowledge gained
is used to design a new set of language constructs through language abstraction which is
flexible via plug-in and multiple instructions per-statement mechanisms. Indeed, the
mechanisms are very much needed in supporting role transition management in rapid
prototyping of CSCW systems.

Key Words: CSCW, role transition, fast programming, abstract programming
language

INTRODUCTION

In computer support collaborative work (CSCW), users work together from remote locations
virtually. The natures of their works are dynamic and usually last for a short period of time.
Thus, collaboration systems must respond to the new requirements. Not only works are
dynamic, their existences are also unpredictable and ad-hoc [1][2].

In addition, users are also dynamic and need to be managed. One of the management
methods is role-based where works are distributed to roles and not to users directly. Users
are responsible to the works only when they play the roles. Any changes to users will not
affect the works arrangements. When user change role, role transition occurs and it requires
management. Operating in dynamic environment, such applications system must be flexible.
They must support fast development and maintenance to cater for frequently changing
requirement.

There are many methods to achieve the flexibility such as through tools, system design and
development. Unfortunately, tools are limited in term of their capabilities and adaptability to
dynamic environment due to lacking of preconceived functionality [3]. Similarly, even though
system design and development methods have proven successful rate, they require a lot of
logic coding and mainly to be used by expert programmers. Thus, it is costly. Some methods
are simple like mashup but could not support comprehensive system development [4] such
as role transition management. Therefore, there is a need for a programming language to be
flexible as such it can support fast development and maintenance of such system. Hence, at
the end of the paper, a new method for flexible language constructs to manage role
transition will be designed. The language is flexible in a sense that it can enhance fast
system development and maintenance.

TESSHI 2018 e-Proceedings

76	
	

	
The paper is structured with Section 2 highlights the background of the study where the
focus is on flexible system as well as flexible programming language. The discussion
continues with highly abstraction notation. In Section 3, a new model of abstraction is
introduced which supports flexibility through plug-in and multiple instructions per-statement
concept. Lastly, in Section 4 we apply the new model by developing a prototype of a call
center before we conclude this research in Section 5.

BACKGROUND STUDIES
	

This section views flexibility through two main perspectives which are system and
programming language. The section also discusses various means on how abstraction
supports flexibility.

Flexible Systems

A system can be defined as flexible if it has the ability to support incomplete process and
continue to support the remaining of the processes during run time [1]. A system can also be
defined as flexible if it has the ability to perform on various platforms with minor changes. For
instance, Skype, with more 299 million users, run on personal computer, Windows and as
well as other platforms such as iOS, Linux, Mac, Window phone, Android, Xbox, Kindle and
TV [5].

Others define flexible systems as robust and not easily crash by a single functionality failure
(Li, Cheng, Makar, & Mitra, 2013). The flexible systems recover quickly from the failure
through two steps which are first error detecting and then self-repairing [6], [7]. In addition, a
system is labeled as flexible if it can be fast and easily developed, modified and maintained
to meet new requirements [8].

Fast development and maintenance can be achieved through reusable components. The
components must be independent from each other, loosely and dynamically bounded among
them. As a result, the reusable components offers easy mixing and matching. The
components should also support extending and augmenting to generate new components
with less afford [9]–[12]. Similarly, the components library should be easily extended to
perform more functionality without changing the structure of the base language [13].

Some of the methods used to achieve flexible and maintainable systems are through good
system development methods such as readable code, clarity of instruction and easier
comprehension of system structure [14], [15]. Another method to support system flexibility is
through programming languages.

Flexible Programming Languages

General programming language is defined as flexible if it can support vast problems in wide
domain areas. The programming languages fall under this category are C, C#, Ruby, Python
and Java. As an example, Java could support standalone systems, networked systems, web
applications and applets for internet browser [16]. Moreover, the system developed by Java
can be deployed to personal computer, mobile phones, IPod, GPS, and auto components

TESSHI 2018 e-Proceedings

77	
	

	
such as air conditional and washing machine [17], [18]. Since general programming
languages provide powerful controls, they are usually complex and demand extensive
learning, thus they are often left to skilled and professional developers [19].

In addition, flexible means portable where the language supports multiple platforms and not
bounded by one platform. This is true for Java and Scripting for Collaborative Online
Learning (S-COL) [20]. Moreover, a programming language is categorized as flexible if the
language notations are highly abstract. The highly abstract languages have proven to speed
up system development and maintenance thus will be explored in depth.

Highly Abstract Notation In Programming Languages

Highly abstract notations hide the detail of coding form users. Example of such language is
Unified Modeling Language (UML). As the name implies, programming is about building
models. Then, coding is automatically generated based on the models. Since most of
modeling languages are based on OOP theory, they involve complicated concepts like
relationship between components and inheritance.

Abstraction is also synonym in domain specific language (DSL) where it offers high level of
abstraction beyond programming. DSL is commonly known as little language or micro-
language [21]. As the name imply, the language is created for a specific domain thus it is
usually small and highly focused to solve specific problems. Learning and programming with
DSL is faster [22] which is the good source for fast system development and maintenance.
Some of the widely known DSL are Backus-Naur Form (BNF), Excel Spreadsheets, HTML,
LATEX, MATLAB, and SQL Database queries [23]. The strength of DSL partly lies on its
abstraction. As a source for language flexibility, abstraction will be explored in detail in the
next subsection.

Flexibility Through Abstraction

Abstraction offers concise as well as powerful notations thus improve testability [24]. It
always leads to smaller models with fewer lines of codes. Thus, abstraction contributes to
less error rate, easier to identify problems, less debugging and fast modification. As a result,
it reduces programming time both during development and maintenance. Programming with
abstract notations allows developers to focus on designing solution to a problem and not
coding [25], [26]. Emphasis is on what a system does rather that how to develop it. This
process reduces switching between design and implementation level which in return reduce
error rate and increase system quality, accuracy and reliability [23], [27].

The use of abstract notations promotes simplicity. Simplicity offers rapid prototyping of new
ideas and does not involve full development efforts. Prototyping is common among
researchers and students for the purpose of experimentation, data collection and simulation
[28]. Simplicity also contributes to faster, easier and cheaper of system designing,
development and maintenance, consequently, increase productivity [29].

Unfortunately, some DSL do not support abstraction up to its full potentials. Moreover, some
DSL mimic structure programming syntax and requires declaration for every variable. On the
other hand some DSL adopt OOP notion with class declaration and instantiation. Thus, the
abstraction level in some cases turns out to be no higher than GPL. It is also common for

TESSHI 2018 e-Proceedings

78	
	

	
DSL to be similar to scripting language for example XML, thus full of tags. The fully
abstraction also cannot be achieved especially if DSL is an internal extension from a base
language which are commonly GPL. The notations are tied by the base language and not
much different from the base syntax. Similarly, some DSL require improvement in term of
their rigid syntax and lack of flexibility in term of spacing.

In order to achieve a better language abstraction, this paper proposed abstraction through
plug-in method and multiple instructions per-statement concepts. Instruction can be changed
by just plug out old statements and plug in new statements. Even though there are multiple
instructions in a single line yet they are simple. Prior to that, role transition management has
been studied in our previous research where a monopoly type of game has been chosen as
the case study.

THE LANGUAGE MODELING

The knowledge gathered on role transition management must be represented by some form
of abstract notations. The notation must be as close as possible to domain concepts as well
as descriptive and easily identifiable.

Syntax Of The Abstract Language In Backus-Naur Form (BNF)

The language designed is on ctrTransition where it is to control user changing role. Below is
the design of ctrTransition using the new introduced models of plug-in and multiple
instructions per-statement. The design is highly abstract.

<role transition management> := ctrTtransition { < role transition definition option >}

< role transition definition option > := <role transition definition> |

<role transition definition> := <set role_t > | < role transition definition> , < set role transition >
<lock>

< set role transition > := <set state > <set mode> <set role> <set duration condition>

<set state> := lock | unlock |

<set mode> := in | out |

<set role> := role< select role definition option> |

<set duration condition> := <duration condition>

<duration condition> := duration<pair time expression>

<pair time expression> := <integer>

ctrTransition is supported by four parameters which are state, mode, role and duration
condition as depicted in Table 1. State and mode are responsible to determine if a role is
allowed to receiver a new user or prevent the current user from leaving a role. Both notations

TESSHI 2018 e-Proceedings

79	
	

	
come with default function. If state and mode are not stated during development, state will
automatically be set to lock while mode is set to both in and out as such the role is lock for
both inbound and outbound. Base from the design, a new set of language construct has
been developed. The language can support multiple mode of controlling via plug in and plug
out concepts.

Table 1 Ctrtransition and Its Parameters

State Mode Role Duration Condition

unlock in one or more roles one or more duration

unlock out one or more roles one or more duration

lock in one or more roles one or more duration

lock out one or more roles one or more duration

State and mode can be applied to one or many roles as well as one or many duration
condition. Duration condition determines the duration in which a role must be in its new
state. The notation not only controls the role state; it also updates the state in a predefined
database. For that purpose, no extra coding is required from programmer. The language
constructs are developed by extending JACIE Scripting Language. The language constructs
are then used to develop a prototype of a call centre management system as a mean to
assess its functionality. Figure 1 is a sample of the prototype.

Figure 1 A Prototype of a Call Centre

TESSHI 2018 e-Proceedings

80	
	

	
The sample of the program flow of the role transition management in the call centre is as
follows:

configuration

{ … }

roleTransit

{ …

unfreeze in role rGB condition "(q > 5 && dayState == true)",

freeze in role rGB condition "(q <= 5 && dayState == true)",

unfreeze inout role rGB condition "(dayState == false)",

… }

on NEWMESSAGE //receive message from server

{ … }

The prototype which was developed with the newly developed language has successful
control role transition using various modes of controlling and supported multiple instruction
per-statements.

In short, with the new set of language construct, flexible system to manage role transition
has been achieved. The system is flexible in two directions:

• The controlling of role transition can be realized faster through plug in plug out
concept which is part of the language features. Thus, development and
maintenance can be achieved faster.

• Automation creating and updating database in a single instruction definitely speed
up programming time.

CONCLUSION
	

In order for a system to survive in computer support collaborative work (CSCW), it must be
flexible and easily adapt to new requirements. Role-based management is one of the
methods to manage users in such environment. The system must also be flexible to support
the consistently changing requirement. This paper supports flexibility of managing role
transition through programming language. A new model of abstraction is introduced which is
plug-in and multiple instruction per-statement. The model is then implemented in a set of
language construct. The language is to control user from entering or leaving a role. In
conclusion, the new set of language construct can support system flexibility in two ways
which are through the plug-in and multiple instruction per-statement mechanism.

TESSHI 2018 e-Proceedings

81	
	

	
ACKNOWLEDGEMENT
	

The authors would like to thank Universiti Teknologi MARA, Malaysia for the facilities
and financial support under the LESTARI grant 600-IRMI/DANA KCM 5/3/LESTARI
(158/2017)

REFERENCES

[1] S. W. Sadiq, M. E. Orlowska, and W. Sadiq, “Specification and validation of process
constraints for flexible workflows,” Inf. Syst., vol. 30, pp. 349–378, 2005.

[2] Z. Idrus, S. Z. Z. Abidin, N. Omar, and Z. Idrus, “A Collaborative Space and Its Entities:
The Importance of Roles and Relationship of Entities,” in 2016 International
Conference on Platform Technology and Service (PlatCon), 2016, no. February, pp. 1–
6.

[3] S. Maad, “An Empirical Modelling Approach to Software System Development in
Finance: Applications and Prospects,” University of Warwick, 2002.

[4] S. Aghaee and C. Pautasso, “Live mashup tools: Challenges and opportunities,” 2013
1st Int. Work. Live Program. LIVE 2013 - Proc., pp. 1–4, 2013.

[5] M. Swider, “Microsoft highlights 299m skype users, 1.5b halo games playe.” Operating
systems, 2013. [Online]. Available: http://www.techradar.com/news/software/operating-
systems/xbox-live-upgrade-includes-300-000-servers-600-times-more-than-its-debut-
1161749. [Accessed: 15-Aug-2016].

[6] Y. Li, E. Cheng, S. Makar, and S. Mitra, “Self-repair of uncore components in robust
system-on-chips: An OpenSPARC T2 case study,” Proc. - Int. Test Conf., pp. 1–10,
2013.

[7] S. Mitra, V. Narayanan, L. Spainhower, and Y. Xie, “Robust system design from
unreliable components. In Intl. Symp. on Computer Architecture.,” 2005.

[8] M. B. Rosson, “A flexible programming language for generating stimulus lists for
cognitive psychology experiments,” Behav. Res. Methods, Instruments Comput., vol.
20, no. 2, pp. 119–128, 1988.

TESSHI 2018 e-Proceedings

82	
	

	
[9] Q. Boucher, A. Classen, P. Faber, and P. Heymans, “Introducing TVL, a text-based

feature modelling language,” in The Fourth International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’10), 2010, pp. 27–29.

[10] H. Fuks, A. B. Raposo, L. P. Magalhães, and I. L. M. Ricarte, “Coordination of
collaborative activities : A framework for the definition of tasks interdependencies,” in
Groupware, 2001. Proceedings. Seventh International Workshop on IEEE, 2001, pp.
170–179.

[11] C. H. Ganoe, J. P. Somervell, D. C. Neale, P. L. Isenhour, J. M. Carroll, M. B. Rosson,
and D. S. Mccrickard, “Classroom BRIDGE : Using collaborative public and desktop
timelines to support activity awareness,” vol. 5, no. 2, pp. 21–30, 2003.

[12] R. Patnayakuni and C. P. Ruppel, “A socio-technical approach to improving the
systems development process,” Inf. Syst. Front., vol. 12, pp. 219–234, 2010.

[13] G. Karsai, B. Rumpe, M. Schindler, and S. Völkel, “Design guidelines for domain
specific languages,” in The 9th OOPSLA Workshop on Domain-specific Modeling,
2009, pp. 7–13.

[14] S. Bartsch, K. Sohr, and C. Bormann, “Supporting agile development of authorization
rules for SME applications,” Collab. Comput. Networking, Appl. Work., pp. 461–471,
2009.

[15] I. Jahnke, “How to foster creativity in technology enhanced learning ?” 2011.

[16] S. Imai, Y., Moritoh, Y., & Imai, M. (2014, “Utilization of Java-based web application for
educational visualization” in In 2014 International Conference on Education
Technologies and Computers (ICETC), IEEE., 2014, pp. 103–109.

[17] M. Masoodian, E. André, M. Kugler, F. Reinhart, B. Rogers, and K. Schlieper, “USEM:
A Ubiquitous Smart Energy Management System for Residential Homes,” Int. J. Adv.
Intell. Syst., vol. 4, no. 3, pp. 519–532, 2014.

[18] P. Kaur and S. Sharma, “Google Android a mobile platform: A review,” Eng. Comput.
Sci. (RAECS), 2014 Recent Adv., no. August, pp. 1–5, 2014.

[19] B. De Alwis, C. Gutwin, and S. Greenberg, “GT / SD : Performance and simplicity in a
groupware toolkit,” in Proceedings of the 1st ACM SIGCHI Symposium on Engineering
Iteractive Computing Systems, 2009, pp. 265–274.

TESSHI 2018 e-Proceedings

83	
	

	

[20] C. Wecker, K. Stegmann, F. Bernstein, M. J. Huber, G. Kalus, I. Kollar, S. Rathmayer,
and F. Fischer, “S-COL: A copernican turn for the development of flexibly reusable
collaboration scripts,” Int. J. Comput. Collab. Learn. vol. 5, no. 3, pp. 321–343, Jul.
2010.

[21] J. Bentley, “Programming pearls: little languages” Commun. ACM, vol. 29, no. 8, pp.
711–721, 1986.

[22] M. Mernik, J. A. N. Heering, and A. M. Sloane, “When and how to develop domain-
specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp. 316–344, 2005.

[23] T. Kosar, M. Mernik, and J. C. Carver, “Program comprehension of domain-specific
and general-purpose languages: Comparison using a family of experiments,” Empir.
Softw. Eng., vol. 17, no. 3, pp. 276–304, Aug. 2011.

[24] T. Lodderstedt and D. Basin, “SecureUML : A UML-based modeling language form
model-driven security,” in The Unified Modeling Language., 2002, pp. 426–441.

[25] L. M. Bibbo, D. García, and C. Pons, “A domain specific language for the development
of collaborative systems,” 2008 Int. Conf. Chil. Comput. Sci. Soc., pp. 3–12, Nov.
2008.

[26] H. Panetto and L. Whitman, “Knowledge engineering for enterprise integration,
interoperability and networking: Theory and applications,” Data Knowl. Eng., p. , 2016.

[27] T. Kosar, S. Bohra, and M. Mernik, “Domain-specific languages: A systematic mapping
study,” Inf. Softw. Technol., vol. 71, pp. 77–91, 2015.

[28] S. Z. Z. Abidin, M. Chen, and P. W. Grant, “Designing interaction protocols using
noughts and crosses type games,” J. Netw. Comput. Appl., vol. 30, no. 2, pp. 586–
613, 2007.

[29] M. Jiménez, M. Piattini, and A. Vizcaíno, Challenges and improvements in distributed
software development: A systematic. Data structure and software engineering:
Challenges and improvements. 2016.

