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ABSTRACT 

The structural, electronic, and optical properties of nickel disulfide 
(NiS2) and iron (Fe)-doped NiS2 were computed by using first-principles 
calculations through the density functional theory (DFT) method. The Fe 
was used as a dopant element to understand the behaviour and the key 
mechanism of Fe-doped NiS2 as a counter electrode in dye-sensitised solar 
cells (DSSC). The results indicated that the structural properties of the 
NiS2 as the cubic crystal structure with the space group Pa3 (205) (pyrite 
structure type) agree with experimental data. The density of states (DOS) 
of NiS2 and Fe-doped NiS2 shows a gapless bandgap due to Mott-Hubbard 
insulator behavior. As for optical properties, the optical absorption of 
NiS2 is shifted towards the infrared (IR) region when doping with Fe while 
the conductivity of Fe-doped NiS2 is slightly higher in conductivity. These 
optical properties show that Fe-doped NiS2 is suitable for the photocatalytic 
activity and may provide an excellent electron charge transfer for a counter 
electrode in DSSC. 
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INTRODUCTION

Over the past few decades, a dye-sensitised solar cell (DSSC) has been 
discovered as a next-generation solar cell and promises a great potential 
device of renewable energy due to its cost-effective, simple manufacturing 
process and nontoxicity. As one of the most essential parts in DSSC, the 
counter electrode acts as a catalyst in regenerate redox mediator [1-4]. The 
counter electrode serves a crucial role with other components in producing 
electricity from the harvested sun [5]. Among all counter electrode materials, 
platinum (Pt) act as one of the most excellent counter electrodes which 
have been studied extensively because of its high electrochemical activity 
in reducing triiodide         [6]. Nevertheless, Pt has a disadvantage such 
as high cost and easily undergoes corrosion in the electrolytes due to the 
presence of redox mediators whereby limits the long-term stability of the 
counter electrode and may inflate the overall cost of DSSC [7-9].

 
Hence, the substitution of Pt counter electrode by other cost-effective 

materials that will exhibit excellent catalytic properties on the redox 
mediator process and electron transport has been studied to create a new 
development of DSSC [10-18]. According to Jinlong et al. [19], NiS2 gives 
an excellent electrocatalytic activity and conductivity as a counter electrode. 
However, the efficiency obtained from NiS2 CE is still uncompetitive as 
compared to the performance of Pt CE [20-22]. Therefore, in the present 
work, we studied the structural, electronic, and optical properties of NiS2 
and Fe-doped NiS2 as counter electrode materials in DSSC.

COMPUTATIONAL METHOD

The first-principles calculations of NiS2 and Fe-doped NiS2 were performed 
using density functional theory (DFT) within Cambridge Serial Total 
Energy Package (CASTEP) computer code [23]. The exchange-correlation 
functional from local density approximation by Ceperley and Adler as 
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Figure 1: The Crystal Structures of (a) NiS2 and (b) Fe-doped NiS2 
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parametrised by Perdew and Zunger (LDA-CAPZ), generalised gradient 
approximation of Perdew-Burke-Ernzerhof (GGA-PBE) and Perdew-Burke-
Ernzerhof for solids (GGA-PBEsol) were used. The structures of NiS2 
and Fe-doped NiS2 were visualised in Figure 1. The NiS2 and Fe-doped 
NiS2 are cubic crystal structure with the space group of Pa-3 (205) (pyrite 
structure type) whereby the Ni atoms occupy the sites in face-centered 
cubic sublattice. In this work, the electron wave functions are expanded and 
converged in a standard plane-wave basis set with a kinetic energy cutoff 
of 350 eV. The calculations are performed using Monkhorst-Pack k-points 
meshes of 4×4×4 with ultrasoft pseudopotential scheme. The bandgap 
using DFT usually underestimates the experimental bandgap. Thus, the 
DFT+U method has been used for electronic calculations [24-25]. The 
electronic properties calculations of NiS2 were performed with and without 
Hubbard U (GGA-PBE+U) interaction and corrected with (U = 3 eV). All 
the calculations are performed based on the optimised lattice structure to 
get the structural properties (lattice parameters, volume, bond length), 
electronic properties (band structure, the density of states), and optical 
properties (dielectric function, refractive index, reflectivity, absorption 
coefficient, conductivity). 
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RESULTS AND DISCUSSION

Structural Properties

The lattice parameters and volumes from the full structural 
optimisation of NiS2 and Fe-doped NiS2 are listed in Table 1. The results 
indicated that the functional from GGA-PBE provides the best agreement 
with the experimental data [26-27], which have a relative deviation of 
1.02% as compared to other functions. As for the Fe-doped NiS2, it shows 
that the Fe doping does not alter the lattice constant that much due to the 
atomic radius of Fe and Ni is quite close [28]. The average bond length of 
the atoms in NiS2 and Fe-doped NiS2 was calculated by using GGA-PBE, 
which are presented in Table 2. The average bond length of the Ni-S bond 
is longer compared to the S-S bond. 

Table 1: Lattice Parameters and Volumes of NiS2 and Fe-doped NiS2. Previous 
Experimental Data Also Included for Comparison

Structure Functional a = b = c (Å) V (Å3)
NiS2 LDA-CAPZ 5.4688

(-3.79 %)
163.567
(-11.8 %)

GGA-PBE 5.6194
(-1.02 %)

177.448
(-3.08 %)

GGA-PBEsol 5.5228
(-2.78 %)

168.460
(-8.58 %)

Experimental [23] 5.6765 182.912
Fe-doped NiS2 GGA-PBE a = 5.564176 172.274

b = 5.565727
c = 5.563846
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Table 2: Average Bond Length of NiS2 and Fe-doped NiS2

Material Functional S-S (Å) Ni-S (Å) Fe-S (Å)
NiS2 GGA-PBE 2.10346 2.36398 -

Fe-doped NiS2 GGA-PBE 2.13238 2.35072 2.26346
			 

Electronic Properties

The DFT+U method was applied in the calculations by inserting the 
U parameter in 3d orbital of Ni atom to acquire an accurate estimation of 
U calculations. The U values were varied from 1 to 8 eV (Figure 2). The 
results in the band gaps concerning U show increasing bandgap as U values 
increase. The bandgap at U = 3 eV (0.384 eV) gives closest bandgap with 
the experimental values, Eg= ~0.4 eV [29]. To elucidate the nature of the 
electronic properties of NiS2 and Fe-doped NiS2, the correlation between 
electrons occupied orbital is illustrated by the density of states (DOS), as 
shown in Figure 3. The Fermi energy is presented at zero energy level. The 
DOS indicated no gap between the conduction band and valence band for 
both NiS2 and Fe-doped NiS2 due to the strong electron interaction of 3d 
orbital in the Ni atom. Hence this result demonstrates the characteristic of 
the structure of NiS2 as a Mott-Hubbard correlated insulator [30]. The DOS 
shows that the valence band and conduction band are fully contributed by 
Ni 3d states, S 3p states, and the DOS of Fe-doped NiS2 indicate the peaks 
of Ni 3d, S 3p, and Fe 3d states, respectively. After doping with Fe, the 
DOS show zero energy band gaps because of the highest valence band, and 
the lowest conduction band overlaps. Hence, Fe-doped NiS2 behaves as a 
metallic material.
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Figure 2: The Energy Bandgap Concerning Hubbard U from GGA-PBE+U, 
U = 1 to 8 eV
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d)

Figure 3: Density of States (DOS) of NiS2 (a) Without U parameter, (b) with U 
Parameter and Fe-doped NiS2 (c) Without U Parameter and (d) with U 

Parameter

Optical Properties 

The optical properties of the dielectric function and refractive index 
of NiS2 and Fe-doped NiS2 are shown in Figure 4. The dielectric function, ε 
(ω), and refractive index, n (ω), are observed up to 7000 nm. The dielectric 
function for the NiS2 and Fe-doped NiS2 at range 3000 nm up to 3500 nm 
(infrared region) shows the values of 32 and 40, respectively. This can be 
observed at the peak of the 3000 nm, whereby it shows that the Fe-doped 
NiS2 has a greater dielectric function compared to the pure NiS2. Meanwhile, 
in the visible region (300-700 nm), the pure NiS2 shows a greater dielectric 
function as compared to Fe-doped NiS2. The refractive index indicates the 
measurement of the ray light passes from a medium to another medium. 
The refractive index in Fe-doped NiS2 exhibits higher value, which is 7.5 
as compared to NiS2 (6.1). Hence, both dielectric function and refractive 
index show that the Fe-doped NiS2 has higher values in both properties, 
whereby these results may lead to greater performances of the efficiency 
in light-harvesting for DSSC. 
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Optical Properties  

The optical properties of the dielectric function and refractive index of NiS2 and Fe-
doped NiS2 are shown in Fig. 4. The dielectric function, 𝜀𝜀𝜀𝜀 (𝜔𝜔𝜔𝜔), and refractive index, n (𝜔𝜔𝜔𝜔), are 
observed up to 7000 nm. The dielectric function for the NiS2 and Fe-doped NiS2 at range 3000 
nm up to 3500 nm (infrared region) shows the values of 32 and 40, respectively. This can be 
observed at the peak of the 3000 nm, whereby it shows that the Fe-doped NiS2 has a greater 
dielectric function compared to the pure NiS2. Meanwhile, in the visible region (300-700 nm), 
the pure NiS2 shows a greater dielectric function as compared to Fe-doped NiS2. The refractive 
index indicates the measurement of the ray light passes from a medium to another medium. The 
refractive index in Fe-doped NiS2 exhibits higher value, which is 7.5 as compared to NiS2 (6.1). 
Hence, both dielectric function and refractive index show that the Fe-doped NiS2 has higher 
values in both properties, whereby these results may lead to greater performances of the 
efficiency in light-harvesting for DSSC.  
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The absorption coefficient               can determine the penetration of light 
into a material before it is absorbed. The calculated absorption coefficient 
of NiS2 and Fe-doped NiS2 without U and with U parameters are shown 
in Fig 5. The prominent peaks intensity for absorption values of NiS2 and 
Fe-doped NiS2 without U are 1.5×104 cm-1 and 2.5×104 cm-1, respectively, 
correspond to the wavelength of 3000 up to 3500 nm. As for the presence 
of the U parameter, the absorption coefficient has increased slightly to 
2.25×104 cm-1 for NiS2 and 2.55×104 cm-1 for Fe-doped NiS2 in the region 
1500 to 3000 nm.  The optical absorption of the NiS2 and Fe-doped NiS2 
at the infrared range (3000-3500 nm) corresponds to the bandgap obtained 
from the electronic properties.

 

 
 

  
(a) (b) 

Figure 4: (a) Dielectric function and (b) Refractive index of NiS2 and Fe-doped NiS2 
concerning wavelength (nm) 

 
 

The absorption coefficient 𝛼𝛼𝛼𝛼 (𝜔𝜔𝜔𝜔) can determine the penetration of light into a material 
before it is absorbed. The calculated absorption coefficient of NiS2 and Fe-doped NiS2 without 
U and with U parameters are shown in Fig 5. The prominent peaks intensity for absorption 
values of NiS2 and Fe-doped NiS2 without U are 1.5×104 cm-1 and 2.5×104 cm-1, respectively, 
correspond to the wavelength of 3000 up to 3500 nm. As for the presence of the U parameter, 
the absorption coefficient has increased slightly to 2.25×104 cm-1 for NiS2 and 2.55×104 cm-1 

for Fe-doped NiS2 in the region 1500 to 3000 nm.  The optical absorption of the NiS2 and Fe-
doped NiS2 at the infrared range (3000-3500 nm) corresponds to the bandgap obtained from the 
electronic properties. 
 

  
(a) (b) 

Figure 5: Absorption Coefficient of NiS2 and Fe-doped NiS2 (a) Without U and (b) with 
U Parameter Concerning Wavelength (nm) 

 
The reflectivity, R (𝜔𝜔𝜔𝜔), describes the amount of light reflected from the materials. The 

major peaks of the reflection spectra from reflectivity concerning wavelength of NiS2 and Fe-
doped NiS2 are shown in Fig. 6(a). In the infrared region, the Fe-doped NiS2 exhibits greater 
reflectivity compared to NiS2. This result indicates that the Fe-doped NiS2 has a higher 
reflection of light as compared to the pure NiS2. The conductivity is one of the important key 
mechanism for a counter electrode in DSSC. The optical conductivity in DSSC will indicate 
the electron charge transfer in the device system. The higher the conductivity will result in 
excellent performances of DSSC. Fig. 6(b) shows that Fe-doped NiS2 is slightly higher in 
conductivity concerning wavelength. The Fe-doped NiS2 exhibits 3 fs-1 conductivity, which is 
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The reflectivity, R (ω), describes the amount of light reflected from 
the materials. The major peaks of the reflection spectra from reflectivity 
concerning wavelength of NiS2 and Fe-doped NiS2 are shown in Figure 
6(a). In the infrared region, the Fe-doped NiS2 exhibits greater reflectivity 
compared to NiS2. This result indicates that the Fe-doped NiS2 has a higher 
reflection of light as compared to the pure NiS2. The conductivity is one 
of the important key mechanism for a counter electrode in DSSC. The 
optical conductivity in DSSC will indicate the electron charge transfer 
in the device system. The higher the conductivity will result in excellent 
performances of DSSC. Figure 6(b) shows that Fe-doped NiS2 is slightly 
higher in conductivity concerning wavelength. The Fe-doped NiS2 exhibits 
3 fs-1 conductivity, which is higher than NiS2 (1.5 fs-1). Thus, due to the 
excellent conductivity obtained in Fe-doped NiS2, it can be concluded that 
the Fe-doped NiS2 may provide an excellent electron charge transfer between 
the triiodide          and iodide         ions at the counter electrode, which can 
give higher efficiency of DSSC compare to pure NiS2.
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Figure 6: (a) Reflectivity and (b) Conductivity of NiS2 and Fe-doped NiS2 Against 

Wavelength (nm) 
 

 
CONCLUSION 
 
In summary, the structural, electronic, and optical properties of pure NiS2 and Fe-doped NiS2 

are investigated in this work. The structural, electronic, and optical properties are calculated 
using GGA-PBE and the DFT+U from GGA-PBE+U to correct the strongly hybridised 
electrons in 3d and 3p orbitals. Analysis of the density of states (DOS) can be concluded that 
the hybridisation of the electron takes place at S 2s at the valence band and Ni 3d together with 
S 3p and Fe 3d for both pure NiS2 and Fe-doped NiS2. As for optical properties, the results 
show the enhancement of the doped material as compared to the pure NiS2. The conductivity 
exhibits a good result for electron transfer. Hence, it may give good improvement for the 
counter electrode in DSSC. 
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CONCLUSION

In summary, the structural, electronic, and optical properties of pure NiS2 
and Fe-doped NiS2 are investigated in this work. The structural, electronic, 
and optical properties are calculated using GGA-PBE and the DFT+U 
from GGA-PBE+U to correct the strongly hybridised electrons in 3d and 
3p orbitals. Analysis of the density of states (DOS) can be concluded that 
the hybridisation of the electron takes place at S 2s at the valence band and 
Ni 3d together with S 3p and Fe 3d for both pure NiS2 and Fe-doped NiS2. 
As for optical properties, the results show the enhancement of the doped 
material as compared to the pure NiS2. The conductivity exhibits a good 
result for electron transfer. Hence, it may give good improvement for the 
counter electrode in DSSC.

ACKNOWLEDGEMENT

  
The authors would like to thank the Ministry of Higher Education (MOHE) 
Malaysia for funding this research under the FRGS grant 600-IRMI/FRGS 
5/3 (337/2019) and Universiti Teknologi MARA (UiTM) for the facilities 
provided.

REFERENCES

[1] 	 J. Gong, J. Liang, & K. Sumathy, 2012. Review on dye-sensitized 
solar cells (DSSCs): fundamental concepts and novel materials. 
Renewable and Sustainable Energy Reviews, 16(8), 5848-5860. https://
doi.org/10.1016/j.rser.2012.04.044

[2] 	 M. Grätzel, 2003. Dye-sensitized solar cells. Journal of Photochemistry 
and Photobiology C: Photochemistry Reviews, 4(2), 145-153. https://
doi.org/10.1016/S1389-5567(03)00026-1

[3] 	 M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, & Z. Lin, 
2015. Recent advances in dye-sensitized solar cells: from photoanodes, 



95

Vol . 17 No. 2, Sept 2020

sensitizers and electrolytes to counter electrodes. Materials Today, 
18(3), 155-162. https://doi.org/10.1016/j.mattod.2014.09.001

[4] 	 S. Sharma, K. K. Jain, & A. Sharma, 2015. Solar cells: In research and 
applications - a review. Materials Sciences and Applications, 6(12), 
1145. DOI: 10.4236/msa.2015.612113 

[5] 	 J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, 
Y. Xie, Y. Wei, 2017. Counter electrodes in dye-sensitized solar 
cells. Chemical Society Reviews, 46(19), 5975-6023. https://doi.
org/10.1039/C6CS00752J

[6] 	 W. Priani, F. Nurosyid, & R. Suryana, 2019. The effect of Pt-counter 
electrode deposition methods on the efficiency of Dye-Sensitized 
Solar Cells. Journal of Physics: Conference Series, Volume 1153, 9th 

International Conference on Physics and Its Applications (ICOPIA) 
14 August 2018, Surakarta, Indonesia

[7] 	 C. P., Lee, C. T Li, & K.C.  Ho, 2017. Use of organic materials in 
dye-sensitized solar cells. Materials Today, 20(5), 267-283. https://
doi.org/10.1016/j.mattod.2017.01.012

[8] 	 G. Syrrokostas, A. Siokou, G. Leftheriotis, & P. Yianoulis, 2012. 
Degradation mechanisms of Pt counter electrodes for dye sensitized 
solar cells. Solar Energy Materials and Solar Cells, 103, 119-127. 
https://doi.org/10.1016/j.solmat.2012.04.021

[9] 	 A. Hauch, & A. Georg, 2001. Diffusion in the electrolyte and charge-
transfer reaction at the platinum electrode in dye-sensitized solar cells. 
Electrochimica Acta, 46(22), 3457-3466. https://doi.org/10.1016/
S0013-4686(01)00540-0

[10] 	J. Theerthagiri, A. R. Senthil, Madhavan, J., & Maiyalagan, T. (2015). 
Recent Progress in Non‐Platinum Counter Electrode Materials for 
Dye‐Sensitized Solar Cells. ChemElectroChem, 2(7), 928-945. https://
doi.org/10.1002/celc.201402406



96

Scientific Research Journal

[11] 	S. Xu, Y. Luo, & W. Zhong, 2011. Investigation of catalytic activity 
of glassy carbon with controlled crystallinity for counter electrode in 
dye-sensitized solar cells. Solar energy, 85(11), 2826-2832. https://
doi.org/10.1016/j.solener.2011.08.014

[12] 	X. Yin, F. Wu, N. Fu, J. Han, D. Chen, P. Xu, M. He, Y. Lin, 2013. 
Facile synthesis of poly (3, 4-ethylenedioxythiophene) film via solid-
state polymerization as high-performance Pt-free counter electrodes 
for plastic dye-sensitized solar cells. ACS Applied Materials & 
Interfaces, 5(17), 8423-8429.

[13] 	M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt, T. 
Ma, 2011. Economical and effective sulfide catalysts for dye-sensitized 
solar cells as counter electrodes. Physical Chemistry Chemical Physics, 
13(43), 19298-19301. https://doi.org/10.1039/C1CP22819F

[14] 	J. Y. Lin, & S. W. Chou, 2013. Highly transparent NiCo2S4 thin film 
as an effective catalyst toward triiodide reduction in dye-sensitized 
solar cells. Electrochemistry Communications, 37, 11-14. https://doi.
org/10.1016/j.elecom.2013.09.027

[15] 	I. A. Ji, H. M. Choi, & J. H. Bang, 2014. Metal selenide films as the 
counter electrode in dye-sensitized solar cell. Materials Letters, 123, 
51-54. https://doi.org/10.1016/j.matlet.2014.02.080

[16] 	N. Balis, V. Dracopoulos, K. Bourikas, & P.  Lianos, 2013. Quantum 
dot sensitized solar cells based on an optimized combination of ZnS, 
CdS and CdSe with CoS and CuS counter electrodes. Electrochimica 
Acta, 91, 246-252. https://doi.org/10.1016/j.electacta.2013.01.004

[17] 	H. Kim, H. Choi, S. Hwang, Y. Kim, & M. Jeon, 2012. Fabrication 
and characterization of carbon-based counter electrodes prepared by 
electrophoretic deposition for dye-sensitized solar cells. Nanoscale 
Research Letters, 7(1), 53. https://doi.org/10.1186/1556-276X-7-53

[18] 	M.H. Samat, M.F.M. Taib, O.H. Hassan, et al., 2020. First-principles 
study on XV2S4 (X =  Ni, Cr, and Mo) counter electrode for dye-
sensitized solar cells. Emergent Mater, 3, 125–131. https://doi.
org/10.1007/s42247-020-00089-y



97

Vol . 17 No. 2, Sept 2020

[19] 	Jinlong Zheng, Z. G., Wei Zhou, Rongzun Zhang, Junxiang Wang, 
Yuzun Fan, Rui Zhang, Zhimei Sun, 2018. Synergistic effect of Ni 
and Fe in Fe-doped NiS2 counter electrode for dye-sensitized solar 
cells- Experimental and DFT studies. Electrochimica Acta, 284, 24-
29. DOI:10.1016/j.electacta.2018.07.138

[20] 	Z. Wan, C. Jia, & Y. Wang, 2015. In situ growth of hierarchical NiS2 
hollow microspheres as efficient counter electrode for dye-sensitized 
solar cell. Nanoscale, 7(29), 12737-12742. DOI:10.1039/c5nr03054d

[21] 	X. Yang, L. Zhou, A. Feng, H. Tang, H. Zhang, Z. Ding, Y. Ma, M. Wu, 
S. Jin & G. Li, 2014. Synthesis of nickel sulfides of different phases 
for counter electrodes in dye-sensitized solar cells by a solvothermal 
method with different solvents. Journal of Materials Research, 29(8), 
935-941. https://doi.org/10.1557/jmr.2014.74

[22] 	J. Zheng, W. Zhou, Y. Ma, W. Cao, C. Wang, & L. Guo, 2015. Facet-
dependent NiS2 polyhedrons on counter electrodes for dye-sensitized 
solar cells. Chemical Communications, 51(64), 12863-12866. https://
doi.org/10.1039/C5CC03890A

[23] 	M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, 
S. J. Clark, & M. C. Payne, 2002. First-principles simulation: Ideas, 
illustrations and the CASTEP code. Journal of Physics: Condensed 
Matter, 14(11), 2717. 

[24] 	M. H. Samat, A. M. M. Ali, M. F. M. Taib, O. H. Hassan, & M. Z. 
A. Yahya, 2016. Hubbard U calculations on optical properties of 3d 
transition metal oxide TiO2. Results in Physics, 6(2016), 891-896. 
https://doi.org/10.1016/j.rinp.2016.11.006

[25] 	M. H. Ridzwan, M. K. Yaakob, M. F. M. Taib, A. M. M. Ali, O. 
H. Hassan, & M. Z. A. Yahya, 2017. Investigation of structural, 
electronic and optical properties of hexagonal LuFeO3 using first 
principles LDA+ U. Materials Research Express, 4(4), 044001. DOI: 
10.1088/2053-1591/aa65b5



98

Scientific Research Journal

[26] 	S. Liu, Y. Li, J. Liu, & Y. Shi, 2015. First-principles study of sulfur 
isotope fractionation in pyrite-type disulfides. American Mineralogist, 
100(1), 203-208. https://doi.org/10.2138/am-2015-5003

[27] 	N. X. Miao, Y. X. Lei, J. P. Zhou, & Q. U. Hassan, 2018. Theoretical 
and experimental researches on NiS2 nanocubes with uniform reactive 
exposure facets. Materials Chemistry and Physics, 207, 194-202. 
https://doi.org/10.1016/j.matchemphys.2017.12.026

[28] 	T. Wang, X. Guo, J. Zhang, W. Xiao, P. Xi, S. Peng, & D. Gao, 2019. 
Electronic structure modulation of NiS2 by transition metal doping 
for accelerating the hydrogen evolution reaction. Journal of Materials 
Chemistry A, 7(9), 4971-4976. https://doi.org/10.1039/C8TA11286J

[29] 	N. Jiang, Q. Tang, M. Sheng, B. You, D. E. Jiang, & Y. Sun, 2016. 
Nickel sulfides for electrocatalytic hydrogen evolution under alkaline 
conditions: A case study of crystalline NiS, NiS 2, and Ni 3 S 2 
nanoparticles. Catalysis Science & Technology, 6(4), 1077-1084. 
https://doi.org/10.1039/C5CY01111F

[30] 	Y. Feng, R. Jaramillo, A. Banerjee, J. M. Honig, & T. F. Rosenbaum, 
2011. Magnetism, structure, and charge correlation at a pressure-
induced Mott-Hubbard insulator-metal transition. Physical Review 
B, 83(3), 035106. DOI: 10.1103/PhysRevB.83.035106


