UNIVERSITI TEKNOLOGI MARA

INVESTIGATION OF DIFFERENT DEGREE OXIDATION ON PHYSICAL AND CONDUCTIVITY PROPERTIES OF GRAPHENE OXIDE VIA MODIFIED HUMMERS METHOD

NURLIYANA HAZIRAH BINTI SULAIMAN

Thesis submitted in fulfilment of the requirements for the degree of Degree of Bachelor of Science (Hons) Polymer Technology

Faculty of Applied Science

December 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurliyana Hazirah binti Sulaiman
Student I.D. No.	:	2016326713
Programme	:	Bachelor of Science (Hons.) Polymer Technology – AS243
Faculty	:	Applied Sciences
Thesis Title	:	Investigation of Different Degree Oxidation on Properties of Graphene Oxide
Signature of Student	:	

January 2020

:

Date

ABSTRACT

Graphene oxide (GO) was successfully synthetized from raw graphite powder. By using modified Hummers method, graphene oxide with different degrees of oxidation level was produced. In this paper, the oxidation agent that has been used was potassium permanganate, KMnO₄. The various types functional group of oxygen were formed in graphene oxide and their impacts on its structure were analyzed by Fourier transform infra-red (FTIR) spectra, UV-Vis spectra, Semiconductor Parameter Analyzer (SPA) and densimeter testing. FTIR studies showed the bond that presented in the sample were O-H, C=C, C-OH and C-O-C respectively. UV-Vis analysis revealed GO with more KMnO₄ shows an increment in absorption and wavenumber due to more concentration of GO and stacked layers of GO. Result from density testing shows that increasing oxidation levels results in a low density of sample. Analysis from SPA revealed, low oxygenated functional group from low level KMnO₄, S-1 produced less band gap open and thus, yielding high conductivity. In contrast, high level KMnO₄, at S-5 produced high and various oxygenated functional groups caused high band gap opened and thus, resulting in low conductivity.

TABLE OF CONTENTS

Page

AUTHOR'S DECLARATION		
ABSTRACT		
ACKNOWLEDGEMENT		
TABLE OF CONTENTS		
LIST OF TABLES LIST OF FIGURES		X
		xi
LIST	OF SYMBOLS	xii
LIST OF ABBREVIATIONS		xiii
СНА	PTER ONE: INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Significant of Study	3
1.4	Objectives of Study	4
СНА	PTER TWO: LITERATURE REVIEW	5
2.1	Modified Hummers Method	5
2.2	Structure of Graphite Oxide, Graphene and the Effect Oxidation Level	7
2.3	Chemical and Mechanical Properties of Graphene	9
2.4	Relation the Dispersion of Graphene Oxide with Oxidation level	10
2.5	Electrochemical properties	11

2.6 Previous Researchers about the Synthesis Process and the 11 Characterization

CHA	CHAPTER THREE: METHODOLOGY	
3.1	Materials	15
3.2	Equipment / Instrument	15
3.3	Method	15
	3.3.1 Synthesis of Graphene Oxide	15
	3.3.2 Characterization Study	16
	3.3.2.1 Fourier-Transform Infrared (FTIR) Spectroscopy	16
	3.3.2.2 Ultraviolet-Visible (UV-Vis) Spectroscopy	16
	3.3.3 Physical Testing	17
	3.3.3.1 Density Testing	17
	3.3.3.2 Conductivity Testing	17
3.4	Flow Chart on the Research Methodology	18
CHA	APTER FOUR: RESULTS AND DISCUSSIONS	20
4.1	Introduction	20
4.2	Characterization	20
	4.2.1 Fourier-Transform Infrared (FTIR) Spectroscopy	20
	4.2.2 Ultraviolet-Visible (UV-Vis) Spectroscopy	22
4.3	Physical Testing	24
	4.3.1 Density Testing	24
	4.3.2 Conductivity Testing	27
CHA	APTER FIVE: CONCLUSION AND RECOMMENDATION	30
5.1	Conclusion	30
5.2	Recommendation	31
REF	ERENCES	32
APPENDICES		35