UNIVERSITI TEKNOLOGI MARA

FABRICATION AND CHARACTERIZATION OF PU/G COMPOSITE: STUDY ON THERMAL AND CONDUCTIVITY PROPERTIES

MUHAMMAD ISKANDAR ZULKARNAIN BIN MOHD RAFFEE

Thesis Submitted in fulfillment of the requirements for the degree of Degree of Bachelor of Science (HONS.) Polymer Technology

Faculty of Applied Science

JANUARY 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Muhammad Iskandar Zulkarnain Bin Mohd Raffee
Student I.D. No.	:	2017711473
Programme	:	Bachelor of Science (Hons.) Polymer Technolgy– AS243
Faculty	:	Applied Sciences
Thesis Title	:	Fabrication and Characterization of PU/G Composite: Study On Thermal and Conductivity Properties

Signature of Student	:	
Date	:	January 2020

ABSTRACT

This study explores the potential of graphene for improvement of properties of thermoplastic polyurethane (PU) composites in sight of thermal property, electrical conductivity, hardness, gel content and bonding spectra (FTIR). Polyurethane/graphene (PU/G) composite were produced by having exfoliation of graphene with DMF and subsequently blend with PEG and IPDI by in-situ addition polymerization with varying concentrations (0-0.18 wt%) of graphene, which resulted in uniform dispersion and partial exfoliation of graphene-sheets in PU matrix. The PU/G synthetization has been confirmed by IR spectra analysis by showing the obvious urethane linkages and hydrogen bonding. The PU's Tg property has increase about 55% with the addition of graphene films improved gradually with increasing graphene concentration. An improvement in hardness has been recorded as 7B pencil hardness imitated the hardness of the PU/G2. The gel content of PU was less effected by the addition of graphene by having a prove showed all of the results gel content within 80%-90%. Next, the electric conductivity increased up to 76% with addition of 0.088% of graphene into PU. Due to the ability of graphene to conduct electricity and covalent bond between PU and graphene, the composite had improve its conductivity.

TABLE OF CONTENTS

Page

AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENT	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF ABBREVIATION	xii

CH	APTER ONE: INTRODUCTION	1
1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Significance of Study	3
1.4	Objectives	4

CHAPTER TWO: LITERATURE REVIEW	5
2.1. Granhene	5

2.1	Graphene	5
2.2	Polyurethane	9
2.3	Polyurethane/Graphene Composite	10
2.4	Pencil Hardness Test	19
2.5	Gel Content	21
2.6	Application Related to Polymer and Polymer Composite	23

CHA	APTER THREE: METHODOLOGY	25
3.1	List of Material	25
3.2	List of Apparatus	25
3.3	List of Instrument	25
3.4	Synthetization of Polyurethane/Graphene	25
3.5	Characterizing and Testing	26

3.5.1 Fourier Transform Infrared Spectroscopy	26
3.5.2 Thermal Stability of PU/Graphene	27
3.5.3 Gel Content	27
3.5.4 Pencil Hardness Test	27
3.5.5 Electrical Conductivity	28
3.6 Methodology Outline	29
CHAPTER FOUR: RESULT AND DISCUSSION	30
4.1 Interaction of Graphene with Polyurethane	30
4.2 Fourier Transfer Infrared (FTIR) Analysis	31
4.3 Differential Scanning Calorimeter (DSC)	32
4.4 Pencil Hardness Test	35
4.5 Determination of Gel Content PU/G	36
4.6 Electrical Conductivity	38
CHAPTER FIVE: CONCLUSION AND RECOMMENDATION	41
5.1 Conclusion	41
5.2 Recommendation	41
DEFEDENCES	12

REFERENCES