ELECTRICAL, MECHANICAL AND ADHESION PROPERTIES OF SILICONE ELECTRICAL CONDUCTIVE ADHESIVES (ECAs) FILLED CARBON BLACK AT ELEVATED TEMPERATURE

NURUL HAZIRAH BINTI HASNOL

Final year project submitted in fulfillment of the requirements for the degree of

BACHELOR OF SCIENCES (Hons.) POLYMER TECHNOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Under Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurul Hazirah binti Hasnol
Student I.D. No.	:	2017412992
Programme	:	Bachelor of Science (Hons.) Polymer Technology
Faculty	:	Applied Sciences
Thesis Title	:	Electrical, Mechanical and Adhesion Properties of Silicone Electrical Conductive Adhesive (ECAs) filled Carbon Black at Elevated Temperature

Sautte Signature of Student :

Date : July 2019

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	Х
ABSTRACT	xi
ABSTRAK	xii

CHAPTER ONE: INTRODUCTION

Background of Study	1
Problem Statement	3
Significance of Study	3
Objectives of Study	4
	Background of Study Problem Statement Significance of Study Objectives of Study

CHAPTER TWO: LITERATURE REVIEW

2.1	Electrical Conductive Adhesives (ECAs)	5
2.2	Categories of Electrical Conductive Adhesives (ECAs)	6
2.3	Polymeric Materials for Electrical Conductive Adhesives (ECAs)	7
2.4	Conductive Fillers for Electrical Conductive Adhesives (ECAs)	8
2.5	Silicone Based Electrical Conductive Adhesives (ECAs)	9
2.6	Carbon Black as Conductive Filler in ECAs Application	10
2.7	Modification of Carbon Black (CB) with	11
	3-Aminopropytriethoxysilane	
2.8	Comparison Study of Conductivity and Mechanical Properties by	13
	Previous Researches	

CHAPTER THREE: METHODOLOGY

3.1	Chemicals	nicals			
3.2	Equipmen	t	14		
3.3	Experimen	xperimental work			
	3.3.1	Formulation of Silicone-Based ECA with Carbon Black	15		
	3.3.2	Surface Treatments of Carbon Black	15		
	3.3.3	Preparation of Carbon Black Filled Silicone Film	15		
3.4	Characteri	zation and Testing			
	3.4.1	Electrochemical Impedance spectroscopy	16		
	3.4.2	Fourier Transform Infrared Spectroscopy (FTIR)	17		
	3.4.3	Hardness Testing	17		
	3.4.4	Tensile Testing	18		
3.5	Flow Char	t: Preparation of Silicone ECAs Filled Carbon Black	19		
CH	APTER FO	OUR: RESULTS AND DISCUSSION			
4.1	FTIR		20		
4.2	Electri	cal Conductivity	24		
4.3	Tensile	e Properties	29		
4.4	Hardne	ess Testing	32		
CH	APTER FI	VE: CONCLUSION AND RECOMMENDATIONS	33		
CIT	ED REFEI	RENCES	35		
APF	APPENDICES				

ABSTRACT

Electrical and Mechanical Properties of Silicone Electrical Conductive Adhesive (ECAs) filled Carbon Black at Elevated Temperature

In this study, different formulation of silicone filled carbon black electric conducting adhesive were successfully introduced. Carbon black was treated with 3-aminotriethoxysilane to improve the surface adhesion by the grafting of amide functional groups on the surface of the carbon black. Silicone filled untreated and treated carbon black with 3-aminotriethoxysilane were prepared and investigated on various loading of carbon black (0%,5%,10% and 5%) on silicone ECAs using film casting method. The characterization was performed on the conductive adhesive film by using Fourier Transform Infrared Spectroscopy (FTIR), hardness and tensile testing. While for the electric property, electrochemical impedance spectroscopy (EIS) was investigated and Cole-cole plot was plotted. It was found that the conductivity of the adhesive conductive film was dependent on the carbon black loading. As the carbon black loading increased, the conductivity of adhesive conductive film was increased up to 10% of carbon black loading and decreased when at 15% of carbon black loading. This is due to the gap distance of interparticle of silicone and carbon black is high. The optimum formulation of electric conductivity of 10% loading of carbon black is $1.75\text{E-08} \Omega/\text{cm}$. This is because, increasing carbon black loading in silicone, it will increase the conductivity of the film. The FTIR testing was conducted to confirm the surface modification of carbon black with 3-aminotriethoxysilane and amide functional groups was presence on the surface of the carbon black at 1549 cm⁻¹, 1250.7 cm⁻¹, 1126.6 cm^{-1,} 976.16 cm⁻¹ and 860.02 cm⁻¹ corresponding to the N-H, SiO-H, Si-O-Si, C-N and C=C stretching vibrations of the amino groups (-R-NH₃⁺), respectively. Furthermore, hardness testing also showed the result by increasing carbon black loading on the silicone, the hardness value also increased. This was supported by the tensile testing which the tensile strength of the silicone filled carbon black increased with increasing in the carbon black content. The Young modulus of the silicone filled carbon black also increased. The modulus increased until carbon black loading of 10% with the value are 0.24016 MPa, then decreased when carbon black loading at 15% of 0.21528 MPa. This is due to the addition of more carbon black into the conductive film. It will increase the stiffness and reduce the ductility of the film.