UNIVERSITI TEKNOLOGI MARA

A COMPARISON OF NEWLY INVENTED PLANT-BASED COAGULANT (DRAGON FRUIT'S FOLIAGE) WITH COMMERCIAL COAGULANTS FOR TREATMENT OF LATEX ONCENTRATED EFFLUENT

JUFERI IDRIS

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Chemical Engineering

November 2007

Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis to be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Candidate's Name	: Juferi Bin Idris
Candidate's ID No	: 2005220333
Programme	: EH 780
Faculty	: Faculty of Chemical Engineering
Thesis Title	: A comparison of newly invented plant-based coagulants
	(dragon fruit's foliage) with commercial coagulants for
	treatment of latex concentrated effluent

Candidate's Signature	
Date	

ABSTRACT

This study investigated the effect of coagulation process on wastewater from latex concentrate industry. The coagulation performances of dragon fruit's foliage which was a newly invented plant based coagulant and commercial coagulants such as alum ferric chloride, polyaluminium chloride, magnesium chloride, ferrous sulfate, ferric sulfate and calcium hydroxide were studied using a jar test. The study also compared different dosages and pH values of the coagulation processes. The analysis of dragon fruit's foliage was also studied. The results revealed that the percentage removals in terms of COD, SS and turbidity of commercial coagulants (alum, ferrous sulfate, calcium hydroxide, PAC, ferric chloride and ferric sulfate) have been found to be around 97-99%, 94-97% and 99% respectively, whereas the newly invented plant-based coagulant at the same dosage of 300 - 600 mg/L demonstrates the same performances as any commercial coagulants. All the coagulants used give high percentage of BOD removal which is from 1327 mg/l before treatment to below 100 mg/l after treatment except for dragon fruit coagulants which gives 173.67 mg/L. However, others parameters such as sulfate, NH3-N and several heavy metals are in compliance with standard B set by Department of Environment, Malaysia . The study has proven the existence of alum compound in the dragon fruit's foliage under the X-Ray Diffractometer (X-RD) analysis and therefore the dragon fruit's foliage can be used as a coagulant and has a great potential as a new plant-based coagulant in latex concentrated wastewater treatment.

TABLE OF CONTENTS

Cont	tent		Page		
ABS	ii				
ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES			iii		
			iv		
			viii		
			x		
LIST	r of pl	ATES	xiii		
CIL	DTED	I: INTRODUCTION			
1.0		4			
1.0	Problems statement		4		
1.1					
1.2	LIIIII	ation of the research	6		
CHA	APTER 2	2: LITERATURE REVIEW			
2.0	Natur	Natural rubber			
2.1	History of the natural rubber		7		
2.2	What	What is Latex?			
2.3	Waste generated in rubber industries		10		
	2.3.1	Source of latex concentrated effluent	12		
	2.3.2	Regulatory standard	13		
2.4	Treati	Treatment method			
	2.4.1	Aerobic followed by ponding system	16		
	2.4.2	Aerobic treatment system	19		
	2.4.3	Land application	24		
	2.4.4	Enclosed aerobic digestion system	24		
2.5	Coagi	Coagulation and Flocculation			
	2.5.1	Basic definition of colloidal particles in wastewater	25		

CHAPTER 1

INTRODUCTION

Malaysia is the third world's largest Natural Rubber (NR) producer but Malaysia's latex glove industry is the world biggest (Reuters, 2005). Since it was introduced by British colonial in 1800's, this commodity had been contributed a huge amount of income into Malaysia's economy which amounted RM 7876.6 million in 2004 (Malaysian Rubber Board & Malaysian Industrial Development Authority, 2005). However, the effluents generated from this industry create a major impact on the environment. It is estimated that about 100 million liters of effluent are discharged daily into stream and rivers from the rubber processing factories in Malaysia with organic loads equivalent to about 4.5 million people (Sestry et al., 1995). The average daily water consumption of the factory is about 3347m³/d, majority of which is released as wastewater (Leong et al., 2003).

In Malaysia, the rubber industries can be categorized into three main sectors which each of these sectors contributes a significant amount of waste, namely upstream (plantation), midstream (raw rubber processing) and down stream (rubber product manufacturing)(Sulaiman et al., 2002). However, only waste from the midstream activities, which involve production of latex concentrate, will be covered in this study due to its highly pollutant contaminations. The effluents from latex concentrate are generated when field latex is separated into two main products, namely latex concentrate and skim latex by using centrifugation method through a centrifuge machine. Untreated latex concentrate filluent comprises a large quantity of water for washing and cleaning of raw materials, small amount of uncoagulated latex and serum (protein, carbohydrate, lipids, caroteine, salt, etc.) (Agriculture Research and Advisory Bureau, 2005). It has also been identified that the effluent from latex concentrate factories contains high level of sulphates, which are originated from sulphuric acid used in the