LOW DENSITY POLYETHYLENE (LDPE)/TAPIOCA STARCH COMPOSITES: EFFECT OF TAPIOCA STARCH AND ETHYLENE VINYL ACETATE (EVA) AS COMPATIBILIZER.

MOHAMAD HANIM BIN ROSLAN

Presented to the Faculty of

Applied Science at the Universiti Teknologi Mara

In Partial Fulfillment of Requirements

For the Bachelor of Science (Hons.) Polymer Technology

Faculty of Applied Science

JULY 2019

AUTHOR'S DECLARATION

This Final Year Project entitled "Low Density Polyethylene (LDPE)/Tapioca Starch Composites: Effect of Tapioca Starch and Ethylene Vinyl Acetate (Eva) As Compatibilizer" was submitted by Mohamad Hanim Bin Roslan, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Polymer Technology, in the faculty of Applied Sciences and was approved by

-___-

Madam Faiezah Bt hashim

Supervisor

Faculty of Applied Science

University Teknologi MARA

02600 Arau

Perlis

Dr. Dalina Binti Samsudin

Project Coordinator

Faculty of Applied Science

Universiti Teknologi MARA

02600 Arau

Perlis

Mohd Fauzi Bin Abdullah

Program Coordinator

Faculty of Applied Science

Universiti Teknologi MARA

02600 Arau

Perlis

Date: <u>15 JULY 2019</u>

Ш

TABLE OF CONTENTS

			Pages		
AU'	THOR'S	DECLARATION	II		
ACKNOWLEDGEMENTS			III		
TA	IV				
LIST OF TABLE LIST OF FIGURE			VII		
			VIII		
LIS	IX				
AB	X				
ABSTRAK			XI		
CHAPTER 1: INTRODUCTION			1		
1.1	Backgro	ound Of Study	1		
1.2	Problem	Statement	3		
1.3 Significance Of Study			4		
1.4	Objectiv	res	5		
CHAPTER 2: LITERATURE REVIEW			6		
2.1	Polymer	Composite	6		
2.2	.2 Bio-Composites				
	2.2.1	Low Density Polyethylene (LDPE) Composite	8		
	2.2.2	Starch composites	10		
	2.2.3	Tapioca Starch	13		
2.3	Factor a	ffecting properties of composite	15		
	2.3.1	Interfacial Adhesion	15		
	2.3.2	Ethylene-Vinyl Acetate (EVA)	16		

CH	CHAPTER 3: METHODOLOGY				
3.1	Material	s	17		
	3.1.1	Matrix	17		
	3.1.2	Filler	17		
3.2	Equipment				
3.3	Methods				
	3.3.1	Preparation of Composite Formulation	18		
3.4	4 Mechanical Testing				
	3.4.1	Tensile Strength Test	19		
	3.4.2	Impact Test	19		
3.5	.5 Thermal Analysis				
	3.5.1	Differential Scanning Calorimetry. (DSC)	19		
3.6	Fourier t	ransform infrared (FTIR) spectroscopy	20		
3.7	7 Flow chart of methodology				
СН	CHAPTER 4: RESULT AND DISCUSSION				
4.1	Fourier 7	Γransform Infrared (FTIR) Spectroscopy	21		
4.2	2 Thermal Analysis				
	4.2.1	Differential Scanning Calorimetry	22		
4.3	Mechani	cal Test	23		
	4.3.1	Tensile Strength	24		
	4.3.2	Young's Modulus	26		
	4.3.3	Elongation at Breaks (%)	27		
	4.3.4	Impact Test	28		

ABSTRACT

LOW DENSITY POLYETHYLENE (LDPE)/TAPIOCA STARCH COMPOSITES: EFFECT OF TAPIOCA STARCH AND EVA AS COMPATIBILIZER.

This study focused on the Low Density Polyethylene (LDPE) and Tapioca Starch with presence of Ethyl Vinyl Acetate as a compatibilizer. There was several percentage of filler loading used such as 0%, 5%, 10%, 15% and 20% in order to give better review of the effect of filler content on the mechanical properties of LDPE/Tapioca starch biocomposite. The polymer were mixed and melted at 20-40 rpm and temperature of 150°C by using melt mixer. The compounding of LDPE/Tapioca starch were formed. Then the characterization studied by Fourier Transform Infrared Spectroscopy (FTIR) showed the interaction between EVA, polymer matrix and the filler content with the functional group present on it. The composite sample were tested with tensile and impact strength to get the insight of its mechanical properties. The value of the tensile strength of LDPE/Tapioca starch was 8.958 MPa of virgin LDPE and 6.359 MPa for 20% of starch content. The result showed a 26.91% and 3.8% of depletion on tensile and impact strength respectively as the filler loading increase. In the other hand, the result shows that of the 5% was the good in result showed that the tensile strength and impact strength test with present of starch content in the biocomposite.