UNIVERSITI TEKNOLOGI MARA

DETERMINATION QIBLA DIRECTION OF BATU KAPAL BASED ON DIGITAL SURFACE MODEL BATU KAPAL

NUR EZZATUL AKMAR BINTI MUSTAFA

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

January 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nur Ezzatul Akmar Binti Mustafa
Student I.D. No.	:	2015237502
Programme	:	Bachelor of Surveying Science and
		Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
Thesis/Dissertation Title	:	Determination Qibla Direction of Batu Kapal Based On Digital Surface Model Batu Kapal
	:	
Signature of Student		
Signature of Student		
Date	:	January 2020

ABSTRACT

The rapid development in the design and production of various types of close range photogrammetry has an influence on a wide range of application and fields. Close range photogrammetry is one of the measurement methods capable of obtaining three dimensional coordinates by processing photos. In most cases archaeological finds and objects remain in the country of origin. Thus, for potential users away from that location, 3D models of archaeological finds and objects form an increasingly important resource since they can be analysed and visualised in efficient databases. This study conducted to determine the gibla direction at the Gunung Jerai, Kedah, and to produce 3D for generated model. Study area obtained that has been chosen is in Geopark Gunung Jerai, Kedah. The aerial photographs were obtained at the surrounding batu kapal area using drone. All the data obtained at the batu kapal area including the established qibla direction from the Kedah's Mufti Department were used to produce 3D model based on digital surface model. The DSM then been used for qibla direction determination and batu kapal direction checking. Each deflection then been tabulated for easier reading and batu kapal then been mapped containing gibla direction with are new value. In conclusion, this study has achieved all the proposed objectives and proves that the UAV system can be used for determine for gibla direction of three dimensional models based on archaeological products.

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS			
AUTHOR'S DECLARATION			
SUPERVISOR'S DECLARATION			
ABSTRACT			
ABSTRAK			
ACKNOWLEDGEMENT			
TABLE OF CONTENT			
LIST OF FIGURES	X		
LIST OF TABLES			
LIST OF ABBREVIATIONS			
CHAPTER 1	1		
INTRODUCTION	1		
1.1 Background of Study	1		
1.2 Problem Statement	2		
1.3 Research Question	3		
1.4 Aim of Study	3		
1.5 Objective of Study	3		
1.6 Scope and Limitation	3		
1.7 Significant of Research	3		
CHAPTER 2			
LITERATURE REVIEW	4		
2.1 Introduction	4		
2.2 Close Range Photogrammetry	4		
2.2.1 Digital Surface Model	4		
2.3 Photogrammetry Branch	5		
2.3.1 Earth Photogrammetry	5		
2.3.2 Close Range Photogrammetry			
2.3.3 Aerial Photogrammetry			
2.3.4 Qibla Direction	7		
2.4 Traditional Versus Modern Techniques in Qibla Direction Determination			
2.4.1 Traditional 8			

2.4.2 Modern Technology	9	
2.5 Digital Photogrammetry	10	
2.6 Photogrammetry Method	11	
2.7 Application of UAV	12	
2.7.1 Mapping	12	
2.7.2 Disaster Research and Management	13	
2.9 Summary	14	
CHAPTER 3	15	
METHODOLOGY	15	
3.1 Introduction	15	
3.2 Flow Chart	16	
3.3 Study Area	17	
3.4 Data Acquisition	18	
3.4.1 Preparation of Materials and Equipment	18	
3.4.2 Aerial Photograph	20	
3.4.3 Qibla Direction	21	
3.5 Data Processing	22	
3.5.1 Image Processing	23	
3.6 Result Processing	29	
3.6.1 Qibla Direction Determination	30	
3.7 Conclusion	31	
CHAPTER 4	32	
RESULTS AND ANALYSIS	32	
4.1 Introduction	32	
4.2 Qualitative Analysis	32	
4.2.1 3D Model generated	32	
4.3 Qibla Direction Determination	34	
CHAPTER 5	35	
CONCLUSION AND RECOMMENDATION	35	
5.1 Introduction	35	
5.2 Conclusion	35	
5.3 Recommendation	36	
REFERENCES		
APPENDICES		
APPENDIX A	39	