UNIVERSITI TEKNOLOGI MARA

PRODUCTION OF BIOPLASTIC FROM CASSAVA PEEL WITH DIFFERENT CONCENTRATION OF GLYCEROL AND ADDITION OF CORN STARCH AS FILLER

NUR SYAFIKAH BINTI AZHAR

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor of Sciences (Hons) Biology**

Faculty of Applied Sciences

January 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the academic rules and regulations for undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Nur Syafikah Binti Azhar
Student I.D No.	: 2016709471
Programme	: Bachelor of Science (Hons.) Biology (AS201)
Faculty	: Applied Sciences
Thesis Title	: Production of Bioplastic from Cassava Peel with Different Concentration of Glycerol with Addition of Corn Starch as Filler
Signature of Student	:
Date	: January 2020

ABSTRACT

Nowadays, current plastics are derive from petroleum based that give negative impact not only towards environment but also to animals, its' habitat and human's health. Therefore, this study had been carried out to create bioplastics that environmental friendly in order to reduce the negative impacts. In this study, bioplastic had been created from agriculture waste which is cassava peel with different concentration of glycerol with addition of natural filler (corn starch). This is because to optimize which concentration of glycerol that created the best bioplastic. The characteristic of the bioplastics are determine through FTIR analysis. The results show that all the bioplastics have similarities in spectra that indicates the bioplastics have same chemical composition in term of functional group which are hydroxyl group (O-H), aliphatic saturated hydrocarbon chain (C-H), alkene (C=C) and ester, ether, carboxylic acid as well as anhydride group (C-O). Other than that, mechanical test of this bioplastic divided into tensile strength test, water absorption test and soil burial degradation test. In tensile strength, it is shows that bioplastic with 20 % glycerol has highest tensile strength (2.24 \pm 0.34 MPa), Young's modulus $(67.23 \pm 2.20 \text{ MPa})$ and elongation at break $(22.70 \pm 2.85 \%)$. For water absorption, the highest is bioplastic with 40 % glycerol (71.23 \pm 0.43 %). Next, for soil burial degradation test, all the bioplastic fully degrade (100.00 ± 0.00) and the faster rate of degradation is bioplastic with 40 % of glycerol at week 3. The result in this study shows bioplastic with 20 % glycerol has better mechanical properties in term of tensile strength test even though it degradation is slow compare to the bioplastic with 40 % glycerol. Besides that, bioplastic with 20 % glycerol suitable for packaging due to it can store longer and not degrade too early.

TABLE OF CONTENT

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	X
LIST OF ABBREVIATIONS	xi
LIST OF NOMENCLATURES	xii

CHAPTER ONE: INTRODUCTION

1.1 1	Background of Study	1
1.2 I	Problem Statement	3
1.3 \$	Significance of Study	3
1.4 (Objectives of Study	4

CHAPTER TWO: LITERATURE REVIEW

2.1	Classification, Structure and Uses of Plastics	5
2.2	Plastic Pollution	7
2.3	Degradable Plastic	
	2.3.1 Biodegradable Plastic	9
2.4	Starch Based Plastic	11
2.5	Cassava Peel	12
2.6	Plasticizer	13
	2.6.1 Glycerol	14
2.7	Filler	14
	2.7.1 Natural Filler (Corn Starch)	14

CHAPTER THREE: METHODOLOGY

3.1	1 Method		
	3.1.1	Preparation of Cassava Starch	15
	3.1.2	Preparation of Bioplastic Film	15
	3.1.3	Characterization of Raw Material and Bioplastic Film	
		By Using Fourier Transform Infrared Spectroscopy (FTIR)	16
	3.1.4	Testing Parameters of Bioplastic Film	16
		3.1.4.1 Tensile Strength Test	16
		3.1.4.2 Moisture Absorption Test	17
		3.1.4.3 Soil Burial Degradation Test	17
3.2	Statis	tical Analysis	17
3.3	Flow	Chart	18

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Characteristic of Bioplastics	19
4.2	FTIR Analysis	21
	4.2.1 FTIR Analysis of Cassava Peel, Corn Starch and Glycerol	21
	4.2.2 FTIR on Bioplastics	24
4.3	Tensile Strength Test	26
4.4	Water Absorption Test	28
4.5	Soil Burial Degradation Test	30

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1 Conclusion	33
5.2 Recommendation	34
REFERENCES	35
APPENDICES	39
AUTHOR'S PROFILE	43