UNIVERSITI TEKNOLOGI MARA

PRODUCTION OF POTENTIAL BIOPLASTIC FROM CORN STARCH AND EXTRACTED CELLULOSE FROM Caulerpa lentillifera

FATEN NURALLIA BINTI KAMAROL ARIFIN

Thesis submitted in partial fulfilment of the requirements for the **Bachelor in Science (Hons.) Biology**

Faculty of Applied Sciences

January 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Faten Nurallia binti Kamarol Arifin
Student I.D. No.	: 2016524597
Programme	: Bachelor of Science (Hons.) Biology
Faculty	: Applied Sciences
Thesis Title	: Production of Potential Bioplastic from Corn Starch and
	Extracted Cellulose from Caulerpa lentillifera

Signature of Student :

Date : December 2019

ABSTRACT

Articial polymers are essential in several fields of industry, especially in the packaging industry. Yet, it has an unfavaorable impact on the environment and is the reasons of accumulation of waste and utilization. Hence, the use of renewable resources, which can reduce waste dumping problems, is being studied to create biopolymer films and coatings. Seaweed and cellulose are promising natural polymers. Green seaweed, Caulerpa lentillifera is known for its richness of cellulose. This study aims to produce a bioplastic from corn starch and strengthen with cellulose as filler. The cellulose extracted from seaweed through alkali treatment and acid hydrolysis was confirmed by FTIR characterization. The bioplastic were prepared from corn starch and seaweed based cellulose by using casting method and was revealed to have tensile strength and Young's Modulus significantly rised with the addition of cellulose. However, the elongation at break decreased. The water absorption permeability decreased in addition to cellulose due to enhanced water resistance. Based on the results obtained, the bioplastic film with 10% cellulose concentration gave the highest tensile strength and Young's Modulus value with fine water absorption permeability. Besides, it showed good degradation property. Overall, the combination of starch and cellulose can be used as an alternative in producing bioplastics.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xii

CHAPTER ONE: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Significance of Study	2
1.4	Objectives of Study	3

CHAPTER TWO: LITERATURE REVIEW

2.1	Plastic and Its Environmental Impact	4
	2.1.1 Accumulation of Plastic on The Landfill and Oceans	4
	2.1.2 Plastic Production Globally	5
2.2	Biodegradable Plastic	7
2.3	Cellulose Based Films	9
2.4	Caulerpa lentillifera	11
	2.4.1 Polysaccharide in Caulerpa lentillifera	12
2.5	Potential Edible Film Based Starch and Cellulose from	14
	Caulerpa lentillifera	

3.1 Mater	ials	15
3.1.1	Raw Materials	15
3.1.2	Chemical	15
3.1.3	Apparatus and Instruments	15
3.2 Metho	od	15
3.2.1	Extraction of cellulose from Caulerpa lentillifera	15
3.2.2	Fourier Transform Infrared Spectroscopy (FTIR)	16
	Characterizatio	
3.2.3	Preparation of Starch/Seaweed-Based Cellulose (S-SBC)	16
	bioplastic film	
3.2.4	Fourier Transform Infrared Spectroscopy (FTIR)	16
	Characterization	
3.2.5	Determination of Physical Properties of Bioplastic Film	16
	3.2.5.1 Water absorption permeability	16
3.2.6	Determination of Mechanical Properties of Bioplastic Film	17
	3.2.6.1 Tensile Strength	17
3.2.7	Biodegradation Test	17
3.2.8	Statistical Analysis	17
СНАРТЕ	R FOUR: RESULT AND DISCUSSION	
4.1 FTIR	Analysis	19
4.2 Starch	/Seaweed Based Cellulose (S-SBC) Bioplastic Film	20
4.2.1	Water Absorption Permeability	22
4.2.2	Mechanical Properties of the Film	23
4.2.3	Soil Burial Test	26
СНАРТЕ	R 5: CONCLUSION AND RECOMMENDATION	28
	REFERENCES	
	APPENDICES	
AUTHOR	'S PROFILE	39

CHAPTER THREE: METHODOLOGY