UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF MAGNETIC FORCE DISTANCE ON CORAL GROWTH (*Pocilopora sp.*) IN TELUK DALAM, PULAU LANGGUN, LANGKAWI

NUR FADILAH BINTI YUSOF

Thesis submitted in partial fulfillment of the requirements for the degree of **Bachelor of Science (Hons.) Marine Technology**

Faculty of Applied Sciences

January 2020

This Final Year Project Report entitled " **The Effect Of Magnetic Force Distance On Coral Growth (***Pocilopora Sp.***) In Teluk Dalam, Pulau Langgun, Langkawi** " was submitted by Nur Fadilah Yusof, in partial of the requirements for the Degree of Bachelor of Sciences (Hons.) Marine Technology, in the Faculty of Applied Sciences, and was approved by

> Mr Jamil Bin Tajam Supervisor B. Sc. (Hons.) Marine Technology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Mrs. Rohayu Binti Ramli Project Coordinator B. Sc. (Hons.) Marine Technology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr Zuliahani Binti Ahmad Head of Programme B. Sc. (Hons.) Polymer Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date:

ABSTRACT

Coral reefs are important they protect coastlines from the damaging effects of wave action and tropical storms, provide habitats and shelter for many marine organisms. Coral reefs are endangered species due to global warming, overfishing, and pollution. The current status of coral reefs in Pulau Langgun, Langkawi is in poor to good condition. This research studies the effect of magnetic field distance on the growth of Pocilopora sp. in Teluk Dalam, Pulau Langgun, Langkawi to enhance the growth rate of Pocilopora sp. around the island. The objectives of this study to determine the growth rate of *Pocilopora sp.* between distance, to measure the survival rate of the Pocilopora sp. transplanted by magnetic force and to identify the relationship between the coral growth and the distance of magnetic force. This study will help the coral to rehabilitate faster than normal reactions by creating the ideal of the biophysical conditions using a magnetic force from the neodymium magnet. Pocilopora sp. was selected in this study because of its rapid growth and hard coral. The asexual reproduction of coral reefs using fragmentation techniques was used for each new parent of Pocilopora sp. before mounting on a layer of wire built from PVC pipe. Neodymium magnet is used because the stronger magnetic attraction attracts ions Ca²⁺, Cl⁻, CO³⁻, Na²⁺ from seawater to help coral reef growth. Neodymium magnets are arranged between the reefs to create magnetic attraction. The results of the twomonth study are increased, and the highest increase in coral reef growth was 3.5±1.76mm. The live coral reef rate for two months was 70.37%. The statistical analysis showed a weak positive correlation where p = 0.189, p > 0.05 between the growth rate and distance of the magnetic force. The conclusion from future research is that the study period is within six months, and use larger magnets to further increase the rate of coral reef growth.

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	XX

CHA	PTER	ONE: INTRODUCTION	1	
1.1	Backg	ground of Study and Problem Statement	1	
1.2	Signit	ficance of Study	4	
1.3	Scope	e of Limitation	4	
1.4	Objec	ctive of Study	4	
CHA	APTER '	TWO: LITERATURE REVIEW	5	
2.1	Coral	Reef Distribution in Malaysia Water	5	
2.2	Coral	7		
2.3	Stress	Stressor Input to CoralReef		
	2.3.1	Effect of Climate Change	9	
	2.3.2	Rising Sea Level	9	
	2.3.3	Land Based Pollution	10	
	2.3.4	Sedimentation Process	10	
	2.3.5	Impacts of Eutrophication	11	
	2.3.6	Fishing Activity	12	
2.4	Enhai	Enhancement of Coral Reef Restoration		
	2.4.1	Biorock Technology	14	
	2.4.2	Fragmentation of Coral Reef	15	
2.5	Geomagnetic Field of Magnet in Seawater 16			

	2.5.1 Geomagnetic Field of Magnet in Seawater	17
СНА	PTER THREE: METHODOLOGY	19
3.1	Materials	19
3.2	Study Area	19
3.3	Preparation of Coral Fragmentation Technique	20
3.4	Preparation of Magnet Transplantation Tables Structure with Coral Transplant	21
3.5	Arrangement of Neodymium Magnet	22
3.6	Measuring the Magnetic Field	24
3.7	Measuring the Coral Growth	24
CILA	PTED FOUD DEGULTS AND DISCUSSION	25
	Determinations of Desilances on Deferminations in Table Dalam	25 Dulau
4.1	Determinations of Pochopora sp. Performance in Teluk Dalam,	Pulau
4.0		25 · 27
4.2	Survival Rate of Pocilopora sp. in Teluk Dalam, Pulau Langgun, Langkawi 27	
4.3	Correlation of Coral Growth and Distance of Magnetic Force28	
4.4	Factors Affecting the Growth Rate of Coral	30
	4.4.1 Physiological Stress the Growth Rate of Coral	30
	4.4.2 Direct Removal of Components of the Community Coral Reef	31
	4.4.3 Water Quality Parameter	33
	4.4.4 Sedimentation	33
	4.4.5 Fisheries	34
	4.4.6 Coral Bleaching	35
СНА	PTER FIVE: CONCLUSION AND RECOMMENDATION	37
5.1	Conclusion	37
5.2	Recommendation	38
REF	ERENCES	39
APP	ENDICES	45
CUR	RICULUM VITAE	49