UNIVERSITI TEKNOLOGI MARA

EFFECTS OF TEAK LEAVES (Tectona grandis) AND TALISAY LEAVES (Terminalia catappa) ON WATER QUALITY PARAMETERS OF FRESHWATER

NOOR SHAZLEEN BINTI AHMAD

Dissertation submitted in partial fulfilment of the requirements for the degree of **Bachelor of Science** (Biology)

Faculty of Applied Sciences

January 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with regulations of

Universiti Teknologi MARA. It is original and is the results of my own word, unless

otherwise indicated or acknowledged as referenced work. This thesis has not been

summited to any other academic institution or non-academic institution for any degree

or qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and Regulations

for Pre Graduate, Universiti Teknologi MARA, regulating the conduct of my study and

research.

Name student

: Noor Shazleen Binti Ahmad

Student I.D. No.

: 2016587089

Programme

: Degree of Bachelor of Science (Hons.) Biology

Faculty

: Applied Sciences

Thesis title

: Effects of Teak leaves (Tectona grandis) and Talisay Leaves

(Terminalia catappa) on Water Quality Parameters of

Freshwater

Signature of student :.....

Date

: January 2020

iii

ABSTRACT

At present, researchers have been studying the possibility of using biological natural coagulant to decrease the hazards of using inorganic coagulants. This study aimed to evaluate the effects of teak leaves, talisay leaves and their combination powder towards physical parameters of freshwater water quality by using different dosages of the coagulant. The teak leaves and talisay leaves were collected from that already fallen on the ground and were dried before being grinded finely into powder. The water samples were collected from Tasik Elham of UiTM Cawangan Perlis and their initial reading of physical parameters such as pH, salinity, conductivity, dissolved oxygen, total dissolved solid and absorbance were recorded before and after the experiment when applied with different dosages (0.5 g, 1.5 g, 2.5 g and 3.5 g) of natural coagulants in jar test. Characterization of natural coagulants were determined before and after treatment using FTIR. Based on the result, most of the lower dosages for all the coagulants show positive effects towards the parameters observed except for absorbance reading. Ultimately, the usage of teak leaves powder as the natural coagulant showed the best result as it gave positive result to a few parameters including increment of pH level with 9.02 %, highest decrement of conductivity with 16.83 %, highest improvement of the dissolved oxygen level with 76.19 %, lowered the total dissolved solid with 21.70 % which was higher compared to other two coagulants. Hence, it can be concluded that teak leaves powder showed the highest potential as natural coagulant to help in improving quality of freshwater water sample.

TABLE OF CONTENT

	Page		
CONFORMATION BY PANEL OF EXAMINERS	ii		
AUTHOR'S DECLARATION	iii		
ABSTRACT	iv		
ABSTRAK	v		
ACKNOWLEDGEMENT TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES	vi vii x xi		
		LIST OF ABBREVIATIONS	xii
		LIST OF SYMBOLS	xiii
CHAPTER ONE: INTRODUCTION	1		
1.1 Background Study	1		
1.2 Problem Statement	2		
1.3 Significance of the Study	3		
1.4 Objectives of the Study	4		
CHAPTER TWO: LITERATURE REVIEW	5		
2.1 Freshwater	5		
2.2 Water Quality	5		
2.2.1 pH	7		
2.2.2 Salinity	7		
2.2.3 Conductivity	8		
2.2.4 Dissolved Oxygen	9		
2.2.5 Total Dissolved Solid	10		
2.2.6 Absorbance	10		
2.2.7 FTIR	11		

2.3 Natural Coagulant	11
2.3.1 Tectona grandis	12
2.3.2 Terminalia catappa	13
CHAPTER THREE: RESEARCH METHODOLOGY	14
3.1 Material	14
3.1.1 Raw Material	14
3.1.2 Chemical	14
3.1.3 Apparatus	14
3.2 Experimental Procedures	14
3.2.1 Preparation of Natural Biological Coagulants	15
3.2.2 Characterization of Natural Biological Coagulants Us	sed 15
3.2.3 Collection of Water Sample	16
3.2.4 Initial Analysis of Water Quality Parameters	16
3.2.5 Jar Test Experiment	16
3.2.6 Water Quality Parameters of Water Sample Analysis	17
3.2.6.1 pH	18
3.2.6.2 Salinity	18
3.2.6.3 Conductivity	18
3.2.6.4 Dissolved Oxygen	19
3.2.6.5 Total Dissolved Solid	19
3.2.6.6 Absorbance	20
3.3 Statistical Analysis	20
3.4 Flowchart of Method	21
CHAPTER FOUR: DISCUSSION	22
4.1 FTIR Analysis	22
4.2 Water Quality Parameters	31
4.2.1 pH	31
4.2.2 Salinity	34
4.2.3 Conductivity	35
4.2.4 Dissolved Oxygen	38
4.2.5 Total Dissolved Solid	41
4.2.6 Absorbance	44