ASSESSMENT ENGINE FOR MATHEMATICAL EXPRESSIONS

INSTITUT PENGURUSAN PENYELIDIKAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY :

ARSMAH IBRAHIM ZAINAB ABU BAKAR NURU'L – 'IZZAH OTHMAN

DECEMBER 2010

ABSTRACT

In this research an assessment engine that emulates human marking processes in checking the correctness of student-constructed responses in a free-response mathematics assessment setting. The assessment engine is incorporated with the computational techniques that were constructed in this research. The techniques have succeeded in enabling the engine to implement step-by-step correctness checking of constructed responses in a scheme of worked solutions and to "award" scores that indicate the degree of correctness of each step. The domain of the mathematical problem chosen for this research involved solving linear algebraic equations in one variable.

In providing the process framework for the construction the computational techniques, basic processes and methods from the field of textual information retrieval have been adapted. In providing the method for the determination of the degree of correctness, the method of exact pattern matching and approximate string matching were adapted.

Nine questions on solving linear algebraic equations in one variable which are of different form and level of difficulty were used the testing of the precision of the automated marking implement by the engine. The scores indicating the degree of correctness evaluated by the assessment engine is benchmarked against the scores Tarikh:17 Januari 2011No. Fail Projek:01-01-01-SF0235

Penolong Naib Canselor (Penyelidikan) Institut Pengurusan Penyelidikan Universiti Teknologi MARA 40450 Shah Alam

Ybhg. Prof.,

LAPORAN AKHIR PENYELIDIKAN "ASSESSMENT ENGINE FOR MATHEMATICAL EXPRESSIONS"

Merujuk kepada perkara di atas, bersama-sama ini disertakan 4 (empat) naskah berserta CD Laporan Akhir Penyelidikan bertajuk "Assessment Engine for Mathematical Expressions".

Sekian, terima kasih.

Yang benar,

ARSMAH IBRAHIM Ketua Projek Penyelidikan

TABLE OF CONTENTS

	Page
LETTER OF APPOINTMENT	iii
LETTER OF REPORT SUBMISSION	iv
PROJECT TEAM MEMBERS	v
ACKNOWLEDGMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
ABSTRACT	XV

CHAPTER 1 INTRODUCTION

1.1	Overview	1
1.2	Background to the Research	3
	1.2.1 Mathematics Learning Through Assessment	4
	1.2.2 Pilot Study on Automated Marking at UiTM	5
1.3	Rationale of the Research	7
	1.3.1 Demand for CAA and Automated Marking for Mathematics Assessments.	7
	1.3.2 Available and Accessible Technologies.	9
1.4	Research Objectives	11
1.5	Research Problems	11
1.6	Project Significance	15
1.7	Scope and Limitations of the Study	16
1.8	Summary	17

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	18
2.2	Changing Trends in Mathematics CAA Research	19

2.3	Step-by-step Assessment of Algebraic Solutions	19
	2.3.1 Rule-based or Command-based Environment	20
	2.3.2 Input-based Environment	24
	2.3.3 Integrated Rule-based and Input-based Environment	27
2.4	Adaptation of Information Retrieval Processes	
	2.4.1 Text Analysis and Automatic Indexing (Preprocessing)	30
	2.4.2 Modelling of Documents	33
	2.4.3 Measure of Relevance	33
	2.4.4 Retrieval and Ranking	34
2.5	Similarity Measures For Mathematical Expression	35

2.6 Summary

CHAPTER 3 THE RESEARCH PROCESS

3.1	Introduction		37
3.2	Defining Research Problems		39
3.3	Mathe	matical Modelling of the Similarity Measure	39
	3.3.1	Problem Definition	40
	3.3.2	Data Acquisition, Processing and Analysis	40
	3.3.3	Making Assumptions	42
	3.3.4	Model Formulation	43
	3.3.5	Model Verification	43
	3.3.6	Model Implementation	45
3.4	Develo	opment of the Assessment Engine	45
3.5	Perfor	mance Analysis of the Assessment Engine	46
	3.5.1	Developing the Assessment Engine Prototype	47
	3.5.2	Preparation of Test Sample, Answer Schemes and Mark Schemes	47
	3.5.3	Data Collection and Processing	48
	3.5.4	Data Analysis	50
3.6	Docum	nentation	50

CHAPTER 4 MODELLING THE STRUCTURAL SIMILARITY MEASURE FOR MATHEMATICAL EXPRESSION

4.1	Introduction		
4.2	Mathematical Preliminaries	52	
	4.2.1 The Concept of Structurally Similar	52	
	4.2.2 Multiset (Bag) of Elements Model	53	
	4.2.3 The Notion of Similarity	55	
4.3	Implementation of the Modelling Process	56	
	4.3.1 Statement of the Problem	56	
	4.3.2 Data Acquisition, Reprocessing and Analysis	57	
	4.3.3 Making Assumptions	61	