
Journal of Academia Vol.7, Special Issue 1 (2019) 25-32 

 

25 
 

PORTFOLIO OPTIMIZATION OF RISKY ASSETS USING MEAN-

VARIANCE AND MEAN-CVAR 
 

Hannah Nadiah Abdul Razak*, Mohd. Azdi Maasar, Nur Hafidzah Hafidzuddin, Ernie Syufina Chun Lee 

 
Faculty of Computer and Mathematical Science 

Universiti Teknologi MARA, Negeri Sembilan Branch, Seremban Campus, Negeri Sembilan, Malaysia 

 
*Corresponding author: hannahnadiahh@gmail.com 

 

 

Abstract 

The aim of this research is to apply the variance and conditional value-at-risk (CVaR) as risk 

measures in portfolio selection problem. Consequently, we are motivated to compare the behavior of 

two different type of risk measures (variance and CVaR) when the expected returns of a portfolio vary 

from a low return to a higher return. To obtain an optimum portfolio of the assets, we minimize the 

risks using mean-variance and mean-CVaR models. Dataset with stocks for FBMKLCI is used to 

generate our scenario returns. Both models and dataset are coded and implemented in AMPL 

software. We compared the performance of both optimized portfolios constructed from the models in 

term of risk measure and realized returns. The optimal portfolios are evaluated across three different 

target returns that represent the low risk-low returns, medium risk-medium returns and high risk-high 

returns portfolios. Numerical results show that the composition of portfolios for mean-variance are 

generally more diversified compared to mean-CVaR portfolios. The in-sample results show that the 

seven optimal mean-CVaR0:05 portfolios have lower CVaR0:05 values as compared to their optimal 

mean-variance counterparts. Consequently, the standard deviation for mean-variance optimal 

portfolios are lower than the standard deviation of its mean-CVaR0:05 counterparts. For the out-of 

sample analysis, we can conclude that mean-variance portfolio only minimizes standard deviation at 

low target return. While, mean-CVaR portfolios are favorable in minimizing risks at high target return. 
 
Keywords: mean-risk, optimization, risk minimization, CVaR 

Article history:- Received: 15 February 2019; Accepted: 30 October 2019; Published: 17 December 2019 

© by Universiti Teknologi MARA, Cawangan Negeri Sembilan, 2019. e-ISSN: 2289-6368 
 

Introduction 

Portfolio selection model focuses on dividing one’s wealth among a set of securities. It is one of the 

leading problems in finance. Generally, if we have a set of n available assets that we may invest, we 

are interested in finding a solution on how to divide our wealth among this set of assets. It is common 

to consider the future returns of each assets to act as random variables as they are unpredictable; we 

denote this by 𝑅1, … , 𝑅𝑛. A portfolio is denoted by 𝑋 = 𝑥1, … , 𝑥𝑛 where 𝑥𝑗  is the fraction of the capital 

invested in asset 𝑗, 𝑗 = 1, … , 𝑛. The fraction allocated among the assets is called portfolio weights 

which are required in the investment decisions. In order to construct a portfolio, there are a few 

constraints such as the portfolio weights must be non-negative and sum up to 1, which means no short 

selling is allowed. Then, the set of decision vectors can be expressed as: 

𝑋 =  (𝑥1, … , 𝑥𝑛)| ∑ 𝑥𝑗

𝑛

𝑗=1

= 1, 𝑥𝑗 ≥ 0, ∀ 𝑗 ∈ (1, … , 𝑛) 

Consider that the return of the portfolio, 𝑅𝑥  is random variables, it can be denoted as: 

𝑅𝑥 =  𝑥1𝑅1 + ⋯ + 𝑥𝑛𝑅𝑛 

To optimize a portfolio in which the risk is minimized for the expected target return, many risk 

measures have been introduced. Risk measures consist of various approaches to solve the portfolio 

selection problem. Variance is the first risk measure introduced by Markowitz (1952) to solve a 

portfolio selection problem. Markowitz (1952) has minimized the risk using the mean-variance 

model. Variance is known widely by researchers because it is easy to be implemented and interpreted. 

(1) 
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Other than variance, another examples of risk measures are mean absolute deviation (MAD), lower 

partial moments (LPM), value-at-risk (VaR) and conditional value-at-risk (CVaR). In an article 

written by Markowitz, mean-variance model does not require the whole set of scenario returns as 

parameters, but only the expected returns and the covariance between the component assets 

(Markowitz, 1952). Steinbach (2001) stated that mean-variance approach has received comparatively 

little attention in the context of long-term investment planning. 

 

In highlighting the importance of measuring risk for regulatory purposes, value-at-risk (VaR) was 

introduced in 1993 (Roman & Mitra, 2009). VaR has been used widely in the financial field. To 

estimate VaR of a market risk, we have to determine how much the value of a portfolio could decline 

over a given period of time with a given probability (Hendricks, 1997). Corresponding to the expected 

confidence level, VaR measures are most often expressed as percentiles. Despite its benefits, VaR 

imposes several shortcomings as it fails to solve the portfolio optimization problem. Rockafellar et. al. 

was the first to develop conditional value-at-risk (CVaR) as an alternative optimizable quantile-based 

risk measure (Rockafellar, Uryasev, et al., 2000). They demonstrated portfolio optimization through 

several cases. CVaR is quite similar to VaR for general distributions, but it has better specialties than 

VaR. Studies have shown that risk minimization can be done for large portfolios and scenarios with 

the CVaR performance function and constraints. 

 

Risk measures are categorized into two types; deviation measures and left-tail measures. The first type 

of risk measure consists of symmetric and asymmetric risk measures. Variance, MAD and LPM are 

examples of this kind of risk measures. While the other type of risk measure focuses on the possible 

losses which are measured on the left-tail of a distribution. VaR and CVaR are included in this type of 

risk measure. Mean-risk models and expected utility maximization are the well-established models for 

optimizing portfolios. Mean-risk models are used to minimize risk subject to a constraint of different 

expected return, where expected utility maximization used to maximize return with different level of 

expected risk.  

 

In the paradigm of mean-risk optimization models, a good portfolio has the lowest risk for specified 

level of expected return. Varying the level of expected return, we will obtain different performance of 

portfolios. In an article by Roman, Darby-Dowman, and Mitra (2007), an efficient portfolio 

consistently has the lowest risk for a specified level of expected return in a multi-objective approach. 

They observed that the mean-variance efficient portfolios are not dominated by CVaR; as well as the 

mean-CVaR efficient portfolios are not dominated with respect to variance. Hoe, Hafizah, and Zaidi 

(2010) provided a comparison of different risk measures in portfolio optimization. Their findings 

show that the minimax model outperforms other mean-risk models that employ risk measures of 

variance, absolute deviation, and semi-variance. In 2013, they compare the composition and 

performance employing different risk measures for Malaysian share market data in three different 

economic scenarios. Results show variations in both composition and the performance of these 

portfolios for the three selected economic periods (see Jaaman, Lam and Isa (2003)). Maasar, Roman, 

et al. (2016) also observed that the mean-variance portfolios are the most diversified and mean-CVaR 

efficient portfolios are the least diversified portfolio when applying the mean risk models onto risky 

assets in London Stock Exchange.  

 

The objective of this paper is to minimize the risk measure of portfolio of risky assets using mean-

variance and mean-conditional value-at-risk (CVaR). We construct portfolios to obtain the minimum 

risk measures using mean-variance and mean-conditional value-at-risk (CVaR) at different level of 

specified return. The specified returns set for this study is under the low risk-low return, medium risk-

medium return, and the high risk-high return cases. Consequently, we compare the performance of the 

portfolio obtained based on their profitability and risk by using in-sample and out-of sample analyses. 

From these analyses we will examine the behavior of variance (CVaR) when CVaR (variance) is 

minimized for the mean-CVaR (mean-variance) efficient portfolio.  

Methods 

The first risk measure is proposed by Markowitz (1952), which is known as variance. In an article 

(2) 
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written by Maasar et al. (2016), they reviewed that risk models are divided into two categories. The 

first category is deviation measures from a target, and outcomes of the whole distributions are 

concerned. Variance in one of the examples of the first kind of risk measure, as it measures risk based 

on a specified target, and it involves the results of whole distribution. Second category of risk measure 

only concerned of the left-tail in a distribution, rather than whole distribution. Conditional value-at-

risk (CVaR) that was introduced by Rockafellar et al. (2000), is categorized under this type of risk 

measure. This section explains the risk measures (variance and CVaR) that will be used in our 

numerical work. The first model used in this project is the mean-variance. Mean-variance used 

variance as its risk measure in portfolio selection problem. The variance of random variable 𝑅𝑥 , 

denoted as 𝜎2, of the expected return of the deviations of 𝑅𝑥 is given by: 

𝜎2(𝑅𝑥) = 𝐸 [𝑅𝑥 −  (𝐸(𝑅𝑥))
2

] 

where 𝐸(𝑅𝑥) is the expected value of 𝑅𝑥 . Equation 2 is used in portfolio optimization problem to 

express variance of the portfolio return 𝑅𝑥 =  𝑥1𝑅1+ . . . + 𝑥𝑛𝑅𝑛. Thus, the variance of the return, 𝑅𝑥 is 

defined as: 

𝜎2(𝑅𝑥 ) =  ∑ ∑ 𝑥𝑗

𝑛

𝑘=1

𝑛

𝑗=1

𝑥𝑘𝜎𝑗𝑘  

Value-at-Risk  

VaR measures the risk of loss investments and has been used widely in finance. To calculate VaR of a 

given portfolio 𝑋  with a return  𝑅𝑥  for a holding period, let  𝐴% = 𝛼 ∈ [0,1]  be a percentage that 

represents a sample of worse cases for the outcomes of  𝑅𝑥 , where 𝛼  is usually close to  0 (𝛼 =

0.01(1%) or 𝛼 = 0.05(5%)). Therefore, VaR as returns is expressed as:  

VaR𝑎(𝑅𝑥) =  −𝑞𝑎(𝑅𝑥); for 𝛼 ∈ [0,1] 

where −𝑞𝑎(𝑅𝑥) represents the greatest lower bound from the probability of a distribution that is more 

than 𝛼 . Example: Let 𝛼 = 0.05  with the confident level of  0.95 , and VaR0.05  of a random 

variable, 𝑅𝑥 = 100. From this example, there is a probability of 5% that the losses will be greater than 

100, which also means that a probability of 95% confident that the losses will be less than 100. 

However, VaR is difficult to optimize for discrete distributions, when it is calculated using scenarios 

(Krokhmal, Palmquist, & Uryasev, 2002). Moreover, the losses beyond the value-at-risk cannot be 

estimated. Due to these problems, researchers use conditional value-at-risk (CVaR) to minimize risks 

for a targeted return in portfolio. 

Conditional Value-at-Risk  
Due to the shortcomings of VaR, researchers introduced a new risk measure which is called 

conditional value-at-risk (CVaR). CVaR has superior properties in many respects as a tool in 

optimization modelling. This model is an alternative measure to calculate risk to overcome the 

shortcomings in VaR. CVaR is defined as the conditional expected loss under the conditions that 

exceeds VaR. For general distributions, CVaR, which is quite similar to VaR measure of risk has more 

attractive properties than VaR (Krokhmal et al., 2002). An important result is proven by Rockafellar 

and Uryasev, that CVaR of a portfolio 𝑋 can be calculated by solving a convex optimization problem 

(Rockafellar et al., 2000). So, in this project, we are going to minimize CVaR, and calculate VaR at 

the same time. Consider the decision vector, 𝑥    represents a portfolio, such that 𝑥 = 𝑥1, … , 𝑥𝑛 with 𝑥𝑗 

be the position of asset 𝑗;  

𝑥𝑗 ≥ 0 for 𝑗 = 1, … , 𝑛, with ∑ 𝑥𝑗 = 1

𝑛

𝑗=1

 

As defined in Equation 4, we let 𝛼 = 0.01 and 𝛼 = 0.05, which is in the interval of [0,1]. CVaR is 

considered to be approximately equal to the average losses greater than or equal to VaR at the same 𝛼. 

The CVaR at level 𝛼 of  𝑅𝑥 is defined as: 

(3) 

(4) 

(5) 



Journal of Academia Vol.7, Special Issue 1 (2019) 25-32 

 

28 
 

 

CVaR𝛼(𝑅𝑥) =  −
1

𝛼
{𝐸(𝑅𝑥1{𝑅𝑥≤𝑞𝛼(𝑅𝑥)})} − 𝑞𝛼(𝑅𝑥)[𝑃(𝑅𝑥 ≤ 𝑞𝛼(𝑅𝑥)) − 𝛼]  

 

where 

1Relation = {
1, if Relation is true;
0, if Relation is false.

 

Rockafellar et al. (2000) have proven the following results that is used in CVaR optimization. Let 𝑅𝑥 

be a random variable depends on a decision vector 𝑥 that belongs to a feasible set 𝑋, let 𝛼 ∈ [0,1]. 

CVaR of the random variable 𝑅𝑥 for the confidence level 𝛼 is denoted by the CVaR𝛼(𝑥). The function 

is as follows: 

𝐹𝛼(𝑥, 𝑣) =  
1

𝛼
𝐸[−𝑅𝑥 + 𝑣]+ − 𝑣, 

 

[𝑢]+ = {
𝑢, if 𝑢 ≥ 0;
0, if 𝑢 ≤ 0.

 

Mean-Risk Models 
In this section, we present the formulation of the mean-risk models that will be used in this research, 

that named mean-variance and mean-CVaR optimization models. The following is the form of the 

mean-risk models used in our numerical work. 

• The input data:  

𝑠 = the number of scenarios; 
𝑛 = the number of assets; 
𝑟𝑖𝑗 = the return of asset j under scenario 𝑖; 𝑖 = 1, … , 𝑠; 

𝜇𝑗 = the expected rate of return asset 𝑗; 𝑗 = 1, … , 𝑛; 

𝜎𝑘𝑗 = covariance of scenario returns between assets; 

• The decision variables: 

𝑥𝑗 = the fraction of the portfolio value invested in asset 𝑗. 
 

Mean-variance optimization model is used to minimize variance. The equation in 3 is used as the 

measure of risk and Markowitz (1952) formulated the portfolio optimization as a parametric quadratic 

programming problem: 

minimize ∑ ∑ 𝑥𝑖𝑥𝑗𝜎𝑘𝑗

𝑛

𝑗=1

𝑛

𝑖=1

, 

subject to ∑ 𝜇𝑗𝑥𝑗

𝑛

𝑗=1

≥ 𝑑 

 

where 𝜇𝑗 is the expected return of assets 𝑗, 𝜎𝑘𝑗 = 𝐸[(𝑅𝑘 − 𝐸(𝑅𝑘)) − (𝑅𝑗 − 𝐸(𝑅𝑗))] be the covariance 

of scenario returns between assets 𝑘 and 𝑗, and d is a target expected return for the portfolio. Mean-

variance model will optimize the portfolio of 22 constituent assets, by evaluating all the scenarios and 

the returns. In an article written by Roman, mean-variance model does not require the whole set of 

scenario returns as parameters, but only the expected returns and the co variances between the 

component assets (Roman & Mitra, 2009). For CVaR model, the decision variables 𝑥𝑗, there are 𝑝 + 1 

decision variables. The variable 𝑣 represents the negative of an 𝛼 -quantile of the portfolio return 

distribution. Therefore, to solve this model, the maximum value of variable v may be used as an 

approximation for VaR𝛼. The remaining decision variables of 𝑝 portray the magnitude of negative 

deviations of the portfolio return from α-quantile, for every scenario 𝑖 = 1, … , 𝑠: 
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𝑦𝑖 = {
−𝑣 − ∑ 𝑥𝑗𝑟𝑖𝑗         , if ∑ 𝑥𝑗𝑟𝑖𝑗 ≤ 

𝑛

𝑗=1
− 𝑣; 

𝑛

𝑗=1

0                , otherwise.

 

 

min 𝑣 + 
1

𝛼𝑠
∑ 𝑦𝑖 

𝑠

𝑗=1

 

subject to: 
 

∑ −𝑥𝑗𝑟𝑖𝑗 − 𝑣 ≤ 𝑦𝑖

𝑛

𝑗=1

; ∀𝑖 ∈ {1, … , 𝑠} 

𝑦𝑖 ≥ 0; ∀𝑖 ∈ {1, … , 𝑠} 

∑ 𝜇𝑗𝑥𝑗 ≥ 𝑑

𝑛

𝑗=1

; ∀𝑥 ∈ 𝑋 

Same as mean-variance, mean-CVaR also will optimize the portfolio after the CVaR risk is evaluated. 

Therefore, through this project, we compare the minimum CVaR with the minimum variance 

approach to determine an optimum portfolio selection. 
 

Result and Discussion 

This section presents the results on the performance of the mean-risk models used for this research. 

We consider two risk measures, variance and conditional value-at-risk, with risk minimized by mean-

variance and mean-CVaR respectively. We construct the portfolios in the mean-risk models above for 

different target return. We analyze their performances of in-sample and out-of-sample in terms of 

their risk measures. We consider the data set of 22 constituent assets from FBMKLCI index. We 

compare sets of two constructed portfolios each having the expected values d of low, medium and 

high. We analyzed these portfolios using in-sample parameters of standard deviation and CVaR. For 

a portfolio construction, it is desirable to have smaller CVaR and standard deviation. 

The composition of portfolios is the number of selected assets based on the different level of target 

returns. We analyzed the composition of the in-sample portfolios based on their di-versification. 

From the total of 22 constituent assets, only 13 of them are selected in optimizing in-sample 

portfolios. The selected assets in the portfolio are Hong Leong, Hapseng, TNB, KLCC, Airport, 

Digi, Nestle, Telekom, Genting Malaysia, Press Metal, Public, MISC and PPB. Based on the results 

obtained in AMPL, we observed the selected assets of each portfolios from both models used. From 

our analysis, we found that mean-variance portfolios are more diversified than mean-CVaR for 

different target returns. In Table 1, it is shown that for low target return, mean-variance optimal 

portfolios are the most diversified, while for medium target return, most of the mean-variance 

portfolios are more diversified than mean-CVaR portfolios. But, for the high target return, only 

three efficient mean-variance portfolios are more diversified while the others are not diversified. 

Table 1. Number of assets selected in in-sample portfolios for each target returns 

Model M-V M-CVAR M-V M-CVAR M-V M-CVAR 

d Low (0.5%) Medium (1.5%) High (2.2%) 

1 9 7 7 6 4 4 

2 9 8 8 5 4 3 

3 9 8 8 6 3 3 

4 9 8 6 6 3 2 

5 9 8 5 6 2 2 

6 9 8 5 5 2 2 

8 9 8 4 6 2 2 
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The risk measures of mean-variance and mean-CVaR are calculated from the portfolio construction. 

For mean-variance portfolios, the standard deviation is calculated in AMPL, and the CVaR is 

calculated from the distribution constructed in Microsoft Excel. As well as for mean-CVaR portfolios, 

the tail CVaR measure are obtained from AMPL, while the standard deviation is calculated in 

Microsoft Excel. From all the risk measures obtained, we did comparison between two different 

portfolios of mean-variance and mean-CVaR. 

 

Then, we analyze the portfolio distribution obtained in terms of its risk measure, standard deviation 

and CVaR 5%. We have constructed 7 in-sample efficient portfolios for both mean-variance and 

mean-CVaR models from their returns. Table 2 shows the standard deviation results of all 7 in-sample 

portfolios. We can deduce that mean-variance portfolios have the lowest risk for all levels of target 

returns, d because mean-variance only minimizing variance of portfolios. For an example, the first 

two columns and the first rows in Table 2 show the standard deviation of mean-variance and mean-

CVaR for the In-sample 1 portfolios respectively. The previous explanations mean that 0.0244 is 

obtained from AMPL and 0.0269 is calculated in Microsoft Excel. Therefore, the risk measures for 

the in-sample portfolios are calculated for 7 times at different levels of target return. Meanwhile, 

mean-CVaR only minimizing CVaR of portfolios as we can observe that mean-CVaR portfolios has 

the lowest risk measured from low and medium target returns. Whereas for high target return, only the 

first 4 portfolios of mean-CVaR has the lowest risk, while the other portfolios have equal risk 

measured for mean-variance and mean-CVaR. These results can be seen from Table 3 presents the 

CVaR for the in-sample portfolios. As an example, from the table given, at high target return of In-

sample 1, mean-CVaR has a lower CVaR value which is 0.0828, compared to mean-variance 

portfolios with 0.0914 as its CVaR value. 

Table 2. Standard deviation of in-sample portfolios for each target returns d 

   Standard Deviation  

Models M-V M-CVaR M-V                M-CVaR     M-V           M-CVaR 

d Low (0:5%)  Medium (1:5%) High (2:2%) 

1 0.024 0.027  0.031 0.037 0.059 0.064 

2 0.025 0.028  0.033 0.038 0.067 0.069 

3 0.025 0.029  0.035 0.041 0.073 0.074 

4 0.025 0.028  0.035 0.040 0.070 0.071 

5 0.025 0.028  0.039 0.044 0.097 0.097 

6 0.024 0.028  0.037 0.041 0.091 0.091 

7 0.0245 0.028  0.035 0.039 0.078 0.078 

 
Table 3: CVaR 5% of in-sample portfolios for each target returns d 

   CVaR 5%   

Models 

     M-V            M-

CVaR      M-V            M-CVaR     M-V           M-CVaR 

d Low (0:5%) Medium (1:5%) High (2:2%) 

1 0.047 0.042 0.056 0.045 0.091 0.083 

2 0.050 0.042 0.058 0.049 0.101 0.091 

3 0.050 0.042 0.059 0.051 0.105 0.099 

4 0.050 0.042 0.058 0.050 0.092 0.090 

5 0.050 0.042 0.066 0.058 0.162 0.162 

6 0.049 0.042 0.064 0.056 0.151 0.151 

7 0.049 0.042 0.062 0.054 0.122 0.122 

 

Next, we constructed out-of sample portfolios using the remaining 30 scenarios from the set of data 

used in this research. We expect to calculate the realized returns using the portfolio weights of in-

sample portfolios. Our numerical works show that the results of the analysis in not consistent between 

portfolios. We analyzed the favorable results according to the levels of target return. 
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For low target return, 0.5%, the result shows that the average return is higher for Mean-Variance 

portfolios, while the standard deviation and CVaR are lower in mean-variance and mean-CVaR 

respectively. It is because mean-variance models only minimized variance, while mean-CVaR 

minimized CVaR. The maximum and minimum values are obtained from the portfolio returns which 

both are from mean-CVaR portfolios. As for medium target return, the results are bit different from 

the results of low target return. The higher average still is from mean-variance portfolios, but for the 

risk measure, it is shown that lower standard deviation on mean-CVaR portfolios and lower CVaR on 

Mean-Variance portfolios. For maximum and minimum returns are from mean-CVaR and mean-

variance portfolios respectively. The out-of-sample portfolios for the highest target return, 2.2% also 

shows different results from the other target returns. The lower standard deviation and CVaR are both 

obtained from Mean-Variance portfolios. As the targeted return increases, CVaR can capture more 

risks as it is a tail-based risk measure. Therefore, the out-of-sample results differ as the targeted 

returns differ. Although mean-variance and mean-CVaR could minimize variance and CVaR 

respectively, it is only favorable for low target return. While for medium and high target return, the 

results contradict the previous results. The difference in the realized results show that mean-CVaR 

minimize risks better as the target returns increases. We provided the results of one of the portfolios in 

Table 4 for the reference. 

Table 4: Out-of-sample portfolios for each target returns d 

Realized Returns 

Models          M-V  M-CVaR  M-V          M-CVaR          M-V  M-CVaR 

Scenarios d1 = 0:5% d2 = 1:5% d3 = 2:2% 

1 -0.044 -0.034 -0.025 -0.003 -0.002 -0.016 

2 -0.013 -0.028 -0.018 -0.039 -0.016 -0.009 

3 -0.006 -0.004 -0.006 -0.014 -0.004 -0.012 

4 -0.029 -0.032 -0.021 -0.012 -0.065 -0.036 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

28 0.0023 0.002 0.014 0.001 0.060 0.036 

29 0.002 0.015 0.010 0.015 0.016 0.011 

30 0.009 0.009 0.019 -0.005 0.038 0.023 

Average 0.0023 0.002 0.0065 0.004 0.021 0.018 

Std. Dev. 0.017 0.019 0.017 0.018 0.033 0.0251 

CVaR 5% 0.048 0.044 0.032 0.046 0.069 0.056 

Max 0.030 0.038 0.029 0.038 0.075 0.061 

Min -0.044 -0.034 -0.025 -0.039 -0.065 -0.048 

 

 

Conclusion 

We consider two mean-risk models with variance and conditional value-at-risk as risk measures. 

Variance measures the deviations from the average on any side of distribution, while CVaR 

measures the worst outcomes that may occur in distribution on left-tail. Both approaches are 

evaluated at 3 different level of target returns; low, medium and high returns. To obtain an optimum 

portfolio, we implemented mean-risk models in AMPL and analyzed the results in Microsoft Excel. 

Mean-variance and mean-CVaR are the models used in our numerical work. The target returns are 

specified at 0.5%, 1.5% and 2.2%; corresponding to low risk-low return, medium risk-medium 

return and high risk-high return respectively. The models are implemented on a set of data drawn 

from FBMKLCI, containing 130 scenarios of 22 risky assets. A total of 131 closing prices of the 

risky assets taken from December 2016 until October 2017 are considered to generate 130 monthly 

scenario returns. The returns of each scenarios of risky assets are calculated in Microsoft Excel. Out 

of 130 scenario re-turns generated, 100 scenarios are used to construct efficient in-sample portfolios. 

While, the remaining 30 scenarios are used to back test and validate the in-sample results in out-of-
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sample analysis. Then, we coded mean-variance and mean-CVaR models in AMPL to optimize the 

portfolios, for different level of target returns. The numerical results from AMPL are then analyzed 

in Excel to evaluate the portfolio performance and the composition of portfolios. Based on the 

results found, the composition of portfolios show that mean-variance portfolios are more diversified 

than mean-CVaR portfolios, but with very slight difference. However, there are also portfolios that 

are not diversified given the selected assets for each portfolio are same. We found that the optimal 

portfolios become less diversified as the level of target return increases. In-sample portfolios are 

constructed using 100 scenario returns, in which the concept of rolling windows is applied. We 

constructed seven optimal in-sample portfolios using the first 100 scenarios until the seventh 100 

scenarios. Mean-variance and mean-CVaR models are applied in this research. Their performance is 

compared in term of the risk measure, which are standard deviation and CVaR. For the in-sample 

results, mean-variance shows more favorable results in term of standard deviation as Mean-Variance 

applicable in minimizing variance as its risk measure. While mean-CVaR portfolios have favorable 

results of CVaR 5% because mean-CVaR minimized CVaR as the risk measure on the left-tail 

distribution. From the total of 130 scenario returns, the remaining 30 scenarios are used to back test 

the results of the in-sample portfolios. The consistency of the realized returns calculated in 

Microsoft Excel observed. Based on our analysis, mean-CVaR portfolios are favorable in capturing 

risk for high target return. This aligned with the mean-CVaR assumption where it minimized the 

worst cases in the scenarios. While for medium target return, the results obtained fluctuates and not 

consistent. At low target return, the results obtained in out-of-sample analysis are mostly consistent 

with the results from the performance of in-sample portfolios. The realized returns of the out-of-

sample analysis are inconsistent from the in-sample portfolios. Based on the obtained results, we can 

conclude that mean-variance and mean-CVaR have their own specialties in minimizing risks. As for 

mean-variance, it is applicable and widely used as the method is easy to be calculated, but only 

favorable at low target return. Mean-CVaR is a tail measure, which focuses on the worst cases in the 

scenarios. It is favorable for mean-CVaR to minimize risks at high target returns. 
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