UNIVERSITI TEKNOLOGI MARA

POSITIONING COMPARISON BETWEEN ATLAS L-BAND AND AUTONOMOUS SOLUTION GNSS USING STATIC METHOD

WAN MUHAMMAD SYAFIQ BIN WAN MOHD SUHAIMI 2016208928

Thesis submitted in fulfilment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Honours)

July 2019

AUTHOR'S DECLARATION

I declare that the work on this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Wan Muhammad Syafiq bin Wan Mohd Suhaimi			
Student I.D. No.	:	2016208928			
Programme	:	Bachelor of Surveying Science & Geomatics (Hons) -			
		AP220			
Faculty	:	Architecture, Planning and Surveying			
Thesis	:	Positioning Comparison Between Atlas L-band and			
		Autonomous Solution GNSS Using Static Method			

Signature of Student	:	
Date	:	July 2019

ABSTRACT

Differential Global Navigation Satellites System (DGNSS) is GNSS augmentation system based on enhancement to the primary GNSS constellations information. DGNSS uses fixed terrestrial reference station coordinates to accurately correct the user position by providing differential correction. This research was conducted with aim to compare positioning between autonomous solution GNSS and Atlas-L band using static method. This research was conducted to determine the continuity of data given by Atlas-L band, to analyse the accuracy of positioning data using differential correction of Atlas-L band and autonomous solution GNSS using static positioning and to determine the classification of differential correction data referring to IHO minimum standards table. Data acquisition was conducted by using Hemisphere receiver VS330 and antenna A43 on 20th until 22nd January 2019. After that, data were filtered to remove unreliable data recorded. Statistical analysis was done to support the comparison of positioning data which is descriptive analysis, T Test analysis, horizontal error analysis, vector distance analysis and normal distribution graph. As the result of T Test analysis show that Atlas L-band data recorded in 95% confidence level with the lower value of difference is 0.464 meter and the upper value is 0.465 meter while for autonomous data, the data recorded based on 95% confidence level with the lower value of difference is 2.270 meter and the upper value is 2.273 meter. The final output of this research shows the comparison between positioning given by Atlas L-band and autonomous solution GNSS compared to the known coordinates used. As a conclusion, the continuity of positioning data given by Atlas Lband in northern part of Malaysia are good and position given by Atlas L-band can be classify as Special Order based on classification table by International Hydrographic Organisation.

TABLE OF CONTENT

Contents	5	Pages
CONFIE	RMATION BY PANEL OF EXAMINERS	ii
AUTHO	iii	
SUPERV	iv	
ABSTRA	ACT	v
ACKNO	vi vii	
TABLE		
LIST OF	FIGURES	X
LIST OF	TABLES	xii
LIST OF	ABBREVIATION	xiii
CHAPT	ER ONE	1
INTRO	DDUCTION	1
1.1	Introduction	1
1.2	Background of Study	1
1.3	Problem Statements	2
1.4	Study Area	4
1.5	Research Questions	4
1.6	Aim	5
1.7	Objectives	5
1.8	General Methodology	5
CHAPT	ER TWO	8
LITER	ATURE REVIEWS	8
2.1	Introduction	8
2.2	Global Positioning System (GPS)	8
2.3	Concept of GPS	9
2.4	Concept of DGNSS	9
2.	.4.1 Wide Area DGNSS	10
2.5	Global Correction Services for GNSS	11
2.6	Atlas L-band	12

3.7	Statistical Analysis		
3.8	Result and Analysis		
CHAPT	ER FOUR	43	
RESULT AND ANALYSIS			
4.1	1 Introduction		
4.2	Coverage of Atlas L-band Data	43	
4.	2.1 Atlas L-Band First Day Observation	43	
4.	2.2 Atlas L-Band Second Day Observation	46	
4.3	Continuity of Atlas L-band Data	49	
4.	3.1 48 hours Observation Data of Atlas L-band	49	
4.	3.2 Atlas L-band Descriptive Analysis	50	
4.4	Accuracy of Positioning Data	51	
4.	4.1 Horizontal Error of Atlas L-band	51	
4.	4.2 Horizontal Error of Autonomous Solution GNSS	52	
4.	4.3 Comparison Between Atlas L-band and Autonomous Solution	53	
4.	4.4 Atlas L-band T Test Analysis	55	
4.	4.5 Autonomous Solution GNSS T Test Analysis	57	
4.5	Classification of Positioning Data	59	
CHAPT	ER FIVE	60	
CONC	LUSION AND RECCOMENDATION	60	
5.1	1 Introduction		
5.2	5.2 Conclusion		
5.3	Recommendation		
REFERI	ENCES	62	
APPENDICES			