UNIVERSITI TEKNOLOGI MARA

EVALUATION PERFORMANCE OF UAV MULTISPECTRAL IMAGES FOR GERMPLASME MANGROVE FOREST MAP USING OBJECT BASED IMAGE ANALYSIS(OBIA) AT BAGAN DATOK, PERAK

NAZARUL IKRAM BIN KHAIRI ANUAR

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

July 2019

AUTHOR'S DECLARATION

I declare that the work in this disertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nazarul Ikram bin Khairi Anuar
Student I.D. No.	:	2016490786
Programme	:	Bachelor of Surveying Science and Geomatics (Hons.)– AP220
Faculty	:	Architecture, Planning and Surveying
Title	:	Evaluation Performance of UAV Multispectral Images for Germplasme Mangrove Forest Map Using Object Based Image Analysis(OBIA) at Bagan Datok, Perak.
Signature of Student	:	

Signature of Student	:	
Date	:	July 2019

ABSTRACT

The importance of conservation and restoration of mangroves are to ensure that wetland ecosystems in good condition because the mangrove defend or become natural habitats for some living things such as fish, crab and other. A lot of studies in this topic using satellite remote sensing imagery which to be efficient for monitoring the mangrove ecosystem. The current technology in sensor and carrier platform of Unmanned Aerial System (UAS) with high spatial resolution have been used to monitor crops, forest and other landscapes of interest. The aim is to study the performance of unmanned aerial Vehicle (UAV) multispectral images to establish the germplasm mangrove forest map at Bagan Datok, Perak. First, the image objects were obtained by segmenting the UAV multispectral images. Second, spectral features, textural features and vegetation indices were extracted from the UAV multispectral images. Then generate the 3D point cloud to produce digital surface model (DSM) and the digital terrain model (DTM). The height of the tree was extracted from DSM subtract with DTM. Finally, the objects were classified into different mangrove family and other land covers based on their spectral and spatial characteristic differences. The overall classification accuracy result by using support vector machine (SVM) classifier was 76% (kappa = 0.68). The accuracy of 3D point for height of tree shows 68% with the standard error 0.04. The results provided evidence for the effectiveness and potential of UAV multispectral images for identify mangrove germplasm forest area.

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS	i
AUTHOR'S DECLARATION	ii
SUPERVISOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF FIGURE	ix
LIST OF TABLE	xi
LIST OF PLATE	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER ONE	
INTRODUCTION	1
1.1 Background Study	1
1.2 Problem Statement	4
1.3 Aim and Objective	5
1.4 Research Questions	6
1.5 Significance of Study	6
1.6 Scope and Limitation of Research	7
1.6.1 Scope of Work	7
1.6.2 Limitation and Challenges	7
CHAPTER TWO	
LITERATURE REVIEW	9

2.1 Introduction	9
2.2 Introduction to Mangrove Forest	9
2.2.1 Mangrove Forest Ecosystem	10
2.2.2 Distribution of Mangrove Species in Malaysia	11
2.3 Source of data in mangrove forest classification	14
2.3.1 Classification of Mangrove forest using Survey Application	14
2.4 Technique of Mangrove Classification	16

2.4.1 Object-Based Image Analysis(OBIA)	16
2.5 Image Processing	17
2.5.1 Supervised classification	17
CHAPTER THREE	
METHODOLOGY	18
3.1 Introduction	18
3.2 Study Area	18
3.2.1 Criteria of Study Area	18
3.2.2 Equipment and Software	20
3.3 Flowchart of Methodology	22
3.3.1 UAV Multispectral	23
3.3.2 Image Pre-processing	24
3.3.3 Image Segmentation	28
3.3.4 Feature Extraction	30
3.3.5 UAV Derived DSM	31
3.3.6 Field Investigation Data	34
3.3.7 Object-Based Classification using ENVI 5.3 software	43
3.3.8 Accuracy assessment of Germplasme mangrove forest map	45

CHAPTER FOUR

RESULT AND ANALYSIS

4.	1 Introduction	46
4.	2 Spectral reflectance for all mangrove sample types	46
	4.2.1 Spectral Reflectance information using Spectra Vista GER 1500	47
	4.2.2 Spectral Reflectance acquired from UAV Multispectral image	49
	4.2.3 Comparison and validation for UAV Spectral data	51
4.	3 Analysis Classification using point cloud UAV Multispectral	54
	4.3.1 Height information derived from UAV point cloud data	55
	4.3.2 Analysis for height of mangrove trees stands	61
4.	4 Analysis Classification	63
	4.4.1 Analysis on Normalized Difference Vegetation Index	63
	4.4.2 Analysis on Mangrove Classification	64
	4.4.3 Analysis on Map Accuracy for Mangrove family	67

46