UNIVERSITI TEKNOLOGI MARA

ASSESSMENT OF SATELLITE DERIVED BATHYMETRY FROM SPOT 7 SATELLITE IMAGERY

HANIM FAZIRA BINTI ABD HAMID

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatic (Hons.)

Faculty of Architecture, Planning and Surveying

July 2019

AUTHOR'S DECLARATION

I declare that the work in this disertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Hanim Fazira Binti Abd Hamid
Student I.D. No.	:	2016490794
Programme	:	Bachelor of Surveying Science and Geomatics (Hons) AP220
Faculty	:	Architecture, Planning & Surveying
Thesis	:	Assessment of Satellite Derived Bathymetry from Spot 7 Satellite Imagery
Signature of Student	:	
Date	:	July 2019

ABSTRACT

Bathymetry is the measurement of water depth in oceans, rivers, or lakes. Nowadays, the measurement of water depth also can be estimated by using remotely sensed satellite imagery which is known as Satellite Derived Bathymetry (SDB). Water depth from SDB estimation is based on in-Situ data and can be used to make navigation. Thus, the aim of this study is to assess the estimated near-shore water depth using Spot 7 satellite imagery with In-Situ measurement at Sungai Dinding, Lumut Perak. The objectives are (1) to estimate water depth from Spot 7 satellite image using Ratio Transformation Algorithm and (2) to assess estimated water depth with In-Situ data measurement. In this study, Ratio Algorithm was applied on spectral band blue, green and NIR to estimate SDB and the in-Situ data of hydrgraphic work of Sungai Dinding was used to assess the estimated water depth from SDB. The strong correlation was found between SDB and in situ measurement from 1.0 to 12.0 meters with the value of 0.768. The assessments of SDB were determined from Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) with the value of 0.6573 and 0.5884 respectively. Based on the finding, the ratio method can be used to estimate water depth from SPOT 7 ranging from 1.0 to 9.0m at Sungai Dinding. Overall the finding of this research shown that high spatial resolution of a remotely sensed image such as Spot-7 can potentially be used to estimate water depth in SDB approach.

TABLE OF CONTENT

TITLE	PAGE	
CONFIRMATION BY PANEL OF EXAMINERS	Ι	
AUTHOR'S DECLARATION	п	
SUPERVISOR'S DECLARATION	III	
ABSTRACT	IV	
ACKNOWLEDGEMENT	V	
TABLE OF CONTENT	VI X	
LIST OF TABLE		
LIST OF FIGURE	XI	
LIST OF ABBREVIATIONS	XIII	
CHAPTER ONE	1	
INTRODUCTION	1	
1.1 Researcher Background	1	
1.2 Problem Statement	4	
1.3 Research aim and objective	5	
1.4 Significant of study	6	
1.5 Scope and limitation	6	
1.5.1 Scope of work	6	
1.5.2 Limitation and challenges	7	
1.6 Chapter Outline	8	
CHAPTER TWO	9	
LITERATURE REVIEW	9	
2.1 Introduction	9	
2.2 Meaning of hydrography and bathymetric survey	9	
2.2.1 Standard Method for bathymetric surveying data	10	
2.2.1.1 Single-Beam Echo Sounder	10	
2.3 Water Depth Estimation using Satellite Image	12	
2.3.1 Satellite Derive Bathymetry in Malaysia	14	
2.3.2 Spot 7 Satellite Imagery	15	

3.5.2.2 Spatial Filtering (LPF)	48
3.5.2.3 Raster to Integer Data Conversion	49
3.5.3 In-situ Data Correction	49
3.5.3.1 CSV to Shapefile Data Format Conversion	50
3.5.3.2 Define Coordinate System	50
3.5.3.3 Verification Point Identification	51
3.5.3.4 Reproject Data	51
3.6 Spot 7 Data Processing	52
3.6.1 Masking Processing	52
3.6.1.1 NIR Threshold Value Extraction	52
3.6.1.2 Land and Water Pixel Value Recorded	53
3.6.1.3 Land and Water Separation	54
3.6.2 Glint and Cloud Correction	54
3.6.3 Ratio Transformation Algorithm	55
3.6.4 Depth Extinction	57
3.7 In-Situ Data Processing	59
3.7.1 Interpolation Processing	59
3.7.2 Reclassification	60
3.7.3 Reproject	60
3.8 Accuracy Assessment of SDB and In-situ Data	61
3.8.1 Verification Process	61
3.8.2 RMSE and MAE Computation	62
CHAPTER FOUR	63
RESULT AND DISCUSSION	63
4.1 Introduction	63
4.2 Satellite Derived Bathymetry Map	64
4.3 Bathymetry Map	68
4.4 Accuracy Assessment of SDB	70
4.4.1 Verification Point	70
4.4.2 R ² , RMSE and MAE Computation	71
4.4.2.1 Correlation- R^2 of Charted Depth and SDB	71
4.4.2.2 RMSE and MAE Computation	73