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Abstract—Many studies in current years has concentrated on 

both linear and nonlinear modelling in the real nonlinear system 

applications. This study reports a nonlinear modelling for a 

time-varying process of water temperature by utilising a Binary 

Particle Swarm Optimisation (BPSO) algorithm based on 

Nonlinear Auto-Regressive with eXogenous input (NARX) 

structure. The model structure selection of polynomial NARX 

has been concentrated on BPSO algorithm for system 

identification of Steam Distillation Pilot Plant (SDPP). Several 

model’s selection criteria such as Akaike Information Criterion 

(AIC), Model Descriptor Length (MDL), and Final Prediction 

Error (FPE) were investigated. The results demonstrated that 

all criterion models were considered valid and accurate 

representations of the system. The accuracy was evaluated by 

the high R-squared, small MSE value and passed all the 

correlation and histogram tests. 

 
Index Terms—System Identification, NARX, Particle Swarm 

Optimisation, Distillation Column, Temperature. 

 

 

I. INTRODUCTION 

prediction model can be achieved from system 

identification based on input and output with the 

implementation of mathematical model creation process [1]. 

The model creation needs the input and output data without 

the former knowledge of the system [2]. A linear and 

nonlinear modelling are included in the system identification 

[3], [4].  

An essential oil extractions [5]–[8] and a waste water 

treatment [9] can be implemented by employing a distillation 

column system, which  is one of the popular methods. The 

nonlinear dynamic behaviour has been displayed by a broad 

application of the distillation column in chemical operations 

[10]–[12]. Auto-Regressive with eXogenous input (ARX) 

[9], [13]–[15], Auto-Regressive Moving Average with 

eXogenous input (ARMAX) [16] and Nonlinear Auto- 

Regressive  with  eXogenous  input  (NARX) [17],[18]  were  
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among the linear and nonlinear modelling that has been 

utilised for the distillation column identification. In addition, 

the time-varying dynamic behaviour is a growingly crucial 

area in nonlinear system identification due to the substantial 

challenges type that determined the precise quality 

forecasting [19]. Various efforts have been established for the 

nonlinear and time-varying NARX model development [20]–

[22].  

Unfortunately, some restriction due to the robustness of 

particular input array has been presented in a linear model for 

the nonlinear system [4]. Furthermore, the nonlinear model 

showed greater presentation, potentiality and decent 

compared to lesser correctness and inadequate fit resulted in 

linear model modelling for nonlinear system representation 

[9], [23]. The adequacy of nonlinear dynamic behaviours of 

the nonlinear system is demonstrated substantially and can be 

simply applied to control design. Furthermore, a time-varying 

and nonlinearity behaviour of the real system such as 

distillation column has been a serious matter in such cases 

like loss detection [24] which most existing formulated 

models have a limitation in identifying this physical 

progression [21]. The extended investigation of the nonlinear 

and time-varying model allows in advocated analysis of 

nonlinear system dynamics, thus demonstrate the complexity 

of the system. So far, however, there has been little discussion 

about NARX for the steam distillation column in [6]–[8], 

[16], [25]. In addition, no research has been found that 

applied Binary Particle Swarm Optimisation (BPSO) 

algorithm for the mentioned time-varying distillation column 

process above using polynomial NARX model. 

Time-varying dynamic behaviour is a progressively vital 

area in nonlinear system identification. [20]–[22] have 

magnificently developed the nonlinear and time-varying 

NARX model for semisubmersible platform, dielectric 

elastomer actuators, and human EEG data respectively. 

Recently, time-varying modelling has proven the strength and 

accuracy finding of the nonlinearity process. These highly 

nonlinear responses were revealed through the accurate 

nonlinear model by selecting the significant terms in the 

model. 

The structure selection aim is model parsimony which it 

should capable of clarifying the data dynamics by means of 

the last regressor terms number [26]. Model parsimony aims 

the best model with the least complexity between multiple 

model structures. Information criteria such as Akaike 

Information Criterion (AIC), Final Prediction Error (FPE) 

and Model Descriptor Length (MDL) are used to impose 

parsimony by integrating difficulty drawbacks in accession to 
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residual fit [27]–[29]. The BPSO is an altered of the original 

PSO algorithm for binary optimisation problem solving [30]. 

The particle values [18] and discretised version [31] for the 

solution of a binary problem have been employed using a 

PSO algorithm. Data from previous research has identified 

the capability search, convergence behaviour and algorithm 

accuracy improvement [32] in the study by BPSO execution. 

The proposed BPSO method [33]–[35] was not only 

demonstrated higher precision but also skilful in the model fit 

enhancement and correlation violations (CRV) number 

decline [29]. Moreover, for structure selection optimisation, 

BPSO needed the least iterations with well fitness values for 

convergence [36]. NARX model with BPSO offered a 

reliable model fit for essential oil identification [18] and 

appropriately concealed the dynamics of the time invariant 

system. Additionally, the previous study also presented 

optimal swarm size for convergence using BPSO-based 

NARX for DC Motor [29], [37]. 

In addition, the full range excitation is required due to the 

adequate energy of input signal to promise nonlinear system’s 

competency for the system dynamic nonlinearity presentation 

[38]. Therefore, the identification experiment is very 

important. The suitability of Pseudo Random Binary Signal 

(PRBS) signals as process inputs lead to the common 

application because of broad range excitation of amplitudes 

and frequencies [10], [14], [16],[39]–[45]. 

The purpose of this study is to presents a time-varying 

nonlinear modelling for water temperature by utilising a 

Binary Particle Swarm Optimisation (BPSO) algorithm. It is 

based on the polynomial Nonlinear Auto-Regressive with 

eXogenous input (NARX) for Steam Distillation Pilot Plant 

(SDPP) identification using PRBS input signal. Several 

models selection criteria such as Akaike Information 

Criterion (AIC), Model Descriptor Length (MDL), and Final 

Prediction Error (FPE) were investigated in order to evaluate 

its fitness. 

This paper has been divided into six parts. The second part 

deals with the system identification background. In the third 

part, the experimental design is presented. The methodology 

that has been used in this paper is also reported in part four. 

All the results and discussion has been shown in part five. 

Lastly, the conclusion and future work are discussed in the 

final part. 

II. SYSTEM IDENTIFICATION 

The NARX is a model without the residual terms like 

NARMAX and an extension of ARX.  

The NARX model is presented as 

 

𝑦(𝑡) = 𝑓𝑑 [(
𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … . , 𝑦(𝑡 − 𝑛𝑦),

𝑢(𝑡 − 𝑛𝑘), 𝑢(𝑡 − 𝑛𝑘 − 1), … . , 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑢)
)] + ε(t)     (1)             

 

𝑓𝑑 is the estimated model with corresponding maximum 

lags and input signal time delay, 𝑛𝑦, 𝑛𝑢 and 𝑛𝑘, while 𝑦(𝑡) 

and 𝑢(𝑡), are the output and input, respectively. The pick of 

model structures is required for parameter prediction of 𝑦  

that depends on lagged 𝑦, 𝑢, and 𝜀  terms. 

 

A. Polynomial NARX 

 

NARX polynomial model representation is given by 

 𝑦(𝑡) =  ∑ 𝑃𝑚𝜃𝑚 +  𝜀(𝑡)
𝑛𝑝

𝑚=1                                                  (2) 

The m-th regression term, 𝑃𝑚 and the m-th regression 

parameter, 𝜃𝑚 are presented in the polynomial expansion for 

𝑛𝑝 the number of terms. 

The Least Squares (LS) problem’s formulation and 

solution have been involved in identification. The matrix 

form is 

 

𝑃𝜃 +  𝜀 = 𝑦                                                                                (3) 

 

where 𝑦 is the real reflections, 𝜃 is a coefficient vector and 𝑃 

is a regressor matrix. 

B. Model Structure Selection : Binary Particle Swarm 

Optimisation (BPSO) 

 

The PSO technique is established on evolutionary 

computation and swarm philosophy. The convergence quality 

improvement and the algorithm adaptation in problems 

solving contributed to numerous established variants such as 

Vanilla and Binary PSO algorithms. 

The velocity and position update equations are among the 

Vanilla PSO algorithm, 

 

𝑉𝑖𝑑 = 𝑉𝑖𝑑 + 𝐶1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑑)×𝑟𝑎𝑛𝑑1 + 𝐶2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑑)×𝑟𝑎𝑛𝑑2              (4)                                                                             

 

The best particle’s fitness, 𝑃𝑏𝑒𝑠𝑡  and the best particle’s 

solution, 𝐺𝑏𝑒𝑠𝑡  attained by the swarm with compounding of 

𝐶1 and  𝐶2, the cognition and social learning rate, 

respectively. While the particle velocity, 𝑉𝑖𝑑 and the particle 

position 𝑋𝑖𝑑, are used together with uniformly-distributed 

random numbers, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 which is between 0 and 

1. 

The value of 𝑉𝑖𝑑 has been employed for a particle positions 

alteration. 

 

𝑋𝑖𝑑 = 𝑋𝑖𝑑 + 𝑉𝑖𝑑                                                                        (5) 

 

In binary optimisation problem solving, the probabilities of 

change have been demonstrated in the BPSO particle 

positions rather than the actual solution as in (4) and (5). The 

bit change process is between 0 and 1, as stated below; 

 

bin string = {
1,        𝑋𝑖𝑑 ≥ 0.5
0,        𝑋𝑖𝑑 < 0.5

                                               (6) 

 

The bit will vary from its current condition to another 

(either 0 to 1 or 1 to 0) for probability value bigger than 0.5. 

Otherwise, the bit will sustain for the particle value is smaller 

than 0.5.  

BPSO convergence is affected by various parameters such 

a velocity bounding parameters (𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥), position 

bounding parameters (𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥) and parameters (𝐶1 

and 𝐶2) for the influence control of the swarm and self-

cognition.        

In the swarm of BPSO for polynomial NARX structure 

selection, it involves a linear least squares solution. A 1×𝑚 

solutions vector, 𝑋𝑖𝑑 has been transmitted for each one 

particle. QR factorisation has been employed for the 

forecasting of the parameter value, 𝜃𝑅 for the reduced 𝑃 

matrix (𝜃𝑅). 

 

𝑃𝑅𝜃𝑅 +  𝜀 = 𝑦                                                                                   (7) 

𝑃𝑅 =  𝑄𝑅𝑅𝑅                                                                                       (8) 

𝑔𝑅 = 𝑄𝑅
𝑇𝑦                                                                                         (9) 
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𝑅𝑅𝜃𝑅 =  𝑔𝑅                                                                                      (10) 

 

Next, the value of 𝜃𝑅  can be estimated by reorganising and 

solving (10). 

 

𝜃𝑅 =  𝑅𝑅
𝑇𝑔𝑅                                                                          (11) 

 

C. Model Estimation 

 

Based on the model parameters, 𝜃, the residuals 

Normalised Sum Squared Error (NSSE), 𝑉𝑁𝑆𝑆𝐸(𝜃, 𝑍𝑁) is; 

 

𝑉𝑁𝑆𝑆𝐸(𝜃, 𝑍𝑁) =  
1

2𝑁
∑ 𝜀2(𝑡, 𝜃)𝑁

𝑡=1                                                   (12) 

 

The selection of model order can be done by using several 

established models selection criteria such as Akaike 

Information Criterion (AIC), Model Descriptor Length 

(MDL), and Final Prediction Error (FPE) as shown in (13), 

(14) and (15) respectively. 

 

𝑉𝐴𝐼𝐶 = (1 + 2
𝑑

𝑁
) 𝑉𝑁𝑆𝑆𝐸(𝜃, 𝑍𝑁)                                                  (13) 

𝑉𝑀𝐷𝐿 = (1 + log (𝑁)
𝑑

𝑁
) 𝑉𝑁𝑆𝑆𝐸(𝜃, 𝑍𝑁)                                      (14)                                                                                                              

𝑉𝐹𝑃𝐸 = (
1+

𝑑

𝑁

1−
𝑑

𝑁

) 𝑉𝑁𝑆𝑆𝐸(𝜃, 𝑍𝑁)                                                   (15) 

 

where the number of estimated parameters and the data 

points amount are presented as 𝑑 and 𝑁, respectively. 

𝑉𝑁𝑆𝑆𝐸(𝜃, 𝑍𝑁) → 0 will leads to minimum values of 𝑉𝐴𝐼𝐶 , 

𝑉𝑀𝐷𝐿 and  𝑉𝐹𝑃𝐸when 𝑑 → 1. Models with the lowest 𝑉𝐴𝐼𝐶 , 

𝑉𝑀𝐷𝐿 and 𝑉𝐹𝑃𝐸 scores or fitness values conform the principle 

of parsimony as the smallest quantity of parameters were 

necessary to supply the most beneficial fit for the data. 

The collected data using SDPP will be separated into two 

divisions; training set for model estimation and testing set for 

model validation. For model estimation, the sample data are 

utilized for estimation to fit the NARX model. Three pre-

processing (PP) methods namely magnitude scaling, block 

division, and interlacing are presented.  

Per a standard range, the magnitude scaling method will 

scale the data.  The scaling technique is required when there 

is an unsuitable input-output data sets range. The scaling 

technique formulation is  

 

𝑦 =
(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
+ 𝑦𝑚𝑖𝑛                                        (16) 

 

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) and (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) are the data range after 

and prior to scaling, respectively. 𝑦 and 𝑥 are the data before 

and rescaled, respectively. 

Typically, the equal 50 % division is for training and 

testing. Two methods of division exist, namely, block 

division and interlacing. Only one of these methods is used at 

one time. 

In block division, the training set (𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) consists of 

the first half dataset and the testing set (𝐷𝑡𝑒𝑠𝑡𝑖𝑛𝑔) contains the 

second half dataset. 

The interlacing method divides the dataset based on the 

position of the data into training and testing sets. The training 

set contains odd positions data, while even positions data are 

allotted for the testing set. 

For odd 𝑁 case, 𝐷1,3,5,….,𝑁 =  𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐷2,4,6,….,𝑁−1 =

 𝐷𝑡𝑒𝑠𝑡𝑖𝑛𝑔 . 

Otherwise, for even 𝑁 case, 𝐷2,4,6,….,𝑁−1 =  𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 

𝐷1,3,5,….,𝑁 =  𝐷𝑡𝑒𝑠𝑡𝑖𝑛𝑔. 

 

D. Model Validation 

 

A measurement of the model’s ability for future value 

prediction in One-Step Ahead (OSA) prediction is based on 

its previous data as given by; 

 

�̂� = �̂�(𝑧(𝑡))                                                                            (17) 

 

The estimated nonlinear model, �̂� and the regressors, 𝑧(𝑡) 

are utilised in (17). For the NARX model, the 𝑧(𝑡) 

representation is given below. 

 

𝑧(𝑡) = [
𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … . . , 𝑦(𝑡 − 𝑛𝑦),

𝑢(𝑡 − 𝑛𝑘 − 1), 𝑢(𝑡 − 𝑛𝑘 − 2), … . . , 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑢)
]  (18)                                                                              

 

The magnitude testing of residuals for regression and 

model fitting problems are solved by employing the standard 

methods, Sum Squared Error (SSE) and Mean Squared Error 

(MSE).  

The SSE equation of length 𝑛 for a residual vector 𝜀 is 

given by; 

 

𝑆𝑆𝐸 =  ∑ (𝑒𝑖)
2 = ∑ (𝑦𝑖 − �̂�𝑖)2 𝑛

𝑖=1
𝑛
𝑖=1                                      (19) 

 

where 𝑦𝑖 is the discovered value, and �̂�𝑖 is the projected 

value at point 𝑖. 
Similar to the SSE equation, but the MSE equation is 

divided by 𝑛, the number of samples as stated below;  

 

𝑀𝑆𝐸 =  
∑ (𝑒𝑖)2𝑛

𝑖=1

𝑛
=

∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

𝑛
                                             (20) 

 

A good model fit results from low values of SSE and MSE 

from the residuals magnitude. 

The R-Squared technique is employed for the goodness of 

fit model measurement. The R-Squared is reported as; 

 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2 𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2 𝑛
𝑖=1

                                                             (21) 

 

where the actual and estimated observations at interval 𝑖, 
are described as 𝑦𝑖  and �̂�𝑖, respectively. 𝑛 is the number of 

observations and �̅�𝑖 is the mean value of 𝑦. 

The model validity for the nonlinear model can be done 

using correlation tests for identification by deciding the 

residuals’ whiteness. The following cross correlation tests are 

needed for the fitness exhaustive test of the nonlinear model; 

 

𝜃𝑢𝜀2(τ) = 𝐸[𝑢(𝑡 − 𝜏)𝜀2(𝑡)] = 0, ∀𝜏                                       (22) 

𝜃𝑢′2𝜀(τ) = 𝐸[(𝑢2(𝑡 − 𝜏) − �̅�2(𝜏))𝜀(𝑡)] = 0, ∀𝜏                (23) 

𝜃𝑢′2𝜀2(τ) = 𝐸[(𝑢2(𝑡 − 𝜏) − �̅�2(𝜏))𝜀2(𝑡)] = 0, ∀𝜏            (24) 

 

 

where: 

𝜃𝑥1𝑥2
(𝜏) : correlation coefficient between signals 𝑥1 and 𝑥2. 

𝐸[∎] : mathematical expectation of the correlation function. 

𝜀(𝑡) : model residuals = 𝑦(𝑡) − �̂�(𝑡). 
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𝜏 : lag space. 

𝑢(𝑡) : observed input at time 𝑡. 

  

For any coefficients that are lying beyond the confidence 

band, it reveals a significantly large correlation. The 95 % 

confidence band is expected in correlation tests as of finite 

quantity of data length availability.  

The distribution of the residuals in system identification is 

showed in a histogram analysis. The histogram requires a 

symmetric bell-shaped distribution of the white noise with the 

most frequency amounts clustered in the central and 

narrowing off equally at the end of the tails. 

 

III. EXPERIMENTAL DESIGN 

An SDPP system has been used coil-type water immersion 

heater to generate steam with two resistive temperature 

detectors (RTD) PT-100. The water and steam temperature 

are monitored using both of the RTDs. 1 V to 5 V signals are 

obtained from the RTDs’ resistance output for specific 

several temperature series. The boiling water allows steam 

exceeds through the raw material during the extraction 

process. Then, the condenser condenses the steam first before 

it changes into oil and hydrosol in the collector. A plant with 

a 1.5 kW, 240 V and 50 Hz power has been used for 

immersion heating element with specific sampling time. For 

modelling purposes, a MATLAB software is utilised for plant 

integration and data collection. Fig. 1 illustrates a pilot plant 

of the essential oil extraction system. 

 

Heater

Water

Oil collector

Condenser

Computer
DAQ

T

RTD 2

T

RTD 1

Steam

 
Fig. 1.Steam Distillation Pilot Plant (SDPP) System 

 

IV. METHODOLOGY 

The nonlinear water temperature dataset that consists of      

18, 000 data points from the SDPP system with the 

implementation of the PRBS input is demonstrated in Fig. 2. 

In addition, a total of four PP combinations were employed 

in this analysis. The PP methods are depicted in Table I in 

terms of PP Code.  
 

 
Fig. 2.SDPP Dataset 

 
TABLE I 

PRE-PROCESSING TECHNIQUE AND RESPECTIVE CODES 

PP Code Pre-processing Method 

00 No magnitude scaling, block division 

01 No magnitude scaling, interleaving 

10 Magnitude scaling, block division 

11 Magnitude scaling, interleaving 

 

For optimisation purposes, various swarm sizes, 

maximum iterations, and random seeds parameters have been 

combined. Higher swarm sizes create larger potential in 

global minima searching by the number of agents based on 

optimisation time and computational cost. Termination of the 

PSO search will be driven by the achievement of the objective 

or the finding of maximum iterations for each experiment. In 

addition, the initial random seed for each  𝑉𝑖𝑑 and 𝑋𝑖𝑑 

particles have influence on the final optimisation PSO result. 

The results consistency will be decided by different initial 

random seeds for repeated experiments. The selected 

parameter values as listed in Table II are examined which has 

been implemented by [29], [36] for the fitness function 

optimal convergence exploration.  

 
TABLE II 

BPSO PARAMETER SETTINGS FOR STRUCTURE SELECTION [29], [36] 

Parameter Value 

Fitness Criterion AIC, FPE, MDL 

Swarm size 10, 20, 30, 40, 50 

Maximum Iterations 500, 1000, 1500 

Initial Random Seed 0, 10 000, 20 000 

Xmin 0 

Xmax 1 

Vmin -1 

Vmax +1 

C1 2.0 

C2 2.0 

 

V. RESULTS AND DISCUSSION 

Table III indicates the magnitude scaling from PP 10 and 

PP 11 appeared to have a positive effect on fitness. On the 

other side, the magnitude scaling resulted in a negative effect 

on CRV from PP 10 and 11 based on the minimum fitness 

searching. Hence, these high number of CRV leads to highly 

biased predictions. 
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TABLE III 
EFFECT OF PRE-PROCESSING METHOD ON FITNESS AND TOTAL CRV  

BASED ON MINIMUM FITNESS SEARCH 

PP  
Criteri-

on 

Fitness Value Total 

CRV Min Average Max 

00 

AIC 5.4905×10-3 5.9162×10-3 6.3549×10-3 65 

FPE 5.5696×10-3 5.9629×10-3 6.6241×10-3 140 

MDL 5.3399×10-3 5.6995×10-3 6.1529×10-3 65 

01 

AIC 5.7183×10-3 6.0288×10-3 6.4284×10-3 52 

FPE 5.8063×10-3 6.1875×10-3 6.7334×10-3 52 

MDL 5.5615×10-3 5.8595×10-3 6.2266×10-3 52 

10 

AIC 4.3213×10-6 4.6457×10-6 5.2024×10-6 95 

FPE 4.3975×10-6 4.9249×10-6 6.0915×10-6 95 

MDL 4.1847×10-6 4.5497×10-6 4.8951×10-6 95 

11 

AIC 4.5570×10-6 4.8525×10-6 5.6715×10-6 181 

FPE 4.6021×10-6 4.9651×10-6 6.1327×10-6 174 

MDL 4.3892×10-6 4.6071×10-6 5.2881×10-6 129 

 

Complementary to this, based on the minimum CRV 

searching as illustrated in Table IV, interleaving without 

magnitude scaling recorded the best combination of both 

CRV and fitness from PP 01. In this search, the BPSO-based 

NARX model managed to cut down the CRV numbers and 

maintained the low fitness values in PP 01 while other PP 

methods demonstrated high CRV numbers. Therefore, the 

best results were obtained using PP method 01. This is based 

on the lowest total CRV from both training and testing sets 

and low fitness value. In addition, lower CRV values 

contribute to the uncorrelated residuals which represent a 

good model fit. 
 

TABLE IV 

EFFECT OF PRE-PROCESSING METHOD ON FITNESS AND TOTAL CRV 

BASED ON MINIMUM TOTAL CRV SEARCH 

PP Code  Criterion Min Total CRV Fitness Value 

00 

AIC 61 5.9268×10-3 

FPE 37 5.7732×10-3 

MDL 62 5.5275×10-3 

01 

AIC 9 6.1741×10-3 

FPE 11 6.7334×10-3 

MDL 10 5.7969×10-3 

10 

AIC 47 5.0208×10-6 

FPE 95 4.3975×10-6 

MDL 54 4.8866×10-6 

11 

AIC 52 4.7407×10-6 

FPE 117 4.9478×10-6 

MDL 51 4.5265×10-6 

 
 

As presented in Table V, the models were compared for PP 

01 based on the model's selection criteria as in Eq. (13) – (15). 

High R-squared and low MSE values have been reported by 

all the criterion designated to the acceptable fitting results. 

Not only that, the residuals of all criterion exhibited low 

correlation, as indicated by the small number of CRV. 

Consequently, the AIC model was found to be slightly better 

compared to FPE and MDL models because of the best 

combination of lower fitness values and the least CRV on the 

testing set.   

 
TABLE V 

MODEL VALIDATION SUMMARY 

Fitness 
Criterion 

Evaluation 
Criterion  

Training Set  Testing Set  

AIC  

Times Found 3 

AIC 6.1741×10-3 6.4916×10-3 

FPE 6.3207×10-3 6.6457×10-3 

MDL 5.9703×10-3 6.2773×10-3 

R-squared (%) 99.9975 99.9974 

CRV 3 6 

MSE 1.0061×10-2 1.0579 ×10-2 

FPE 

Times Found 3 

AIC 6.4393×10-3 6.8001×10-3 

FPE 6.7334×10-3 7.1107×10-3 

MDL 6.1622×10-3 6.5075×10-3 

R-squared (%) 99.9976 99.9975 

CRV 3 8 

MSE 9.7700×10-3 1.0317×10-2 

MDL 

Times Found 2 

AIC 5.9948×10-3 6.3335×10-3 

FPE 6.1371×10-3 6.4839×10-3 

MDL 5.7969×10-3 6.1244×10-3 

R-squared (%) 99.9976 99.9975 

CRV 3 7 

MSE 9.7692×10-3 1.0321×10-2 

 

The BPSO-based NARX justification results representing 

the AIC model from PP 01 are presented. Fig. 3 shows good 

model resulted by high R-squared. Additionally, small MSE 

value is demonstrated in Fig. 4. The model created using this 

PP method recorded little violations in the correlation plots 

(Fig. 5 until Fig. 7) and well distributed of the white noise in 

histogram tests (Fig. 8).  

 

 
Fig. 3.BPSO Water Temperature Model Fit 
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Fig. 4.BPSO Water Temperature Residual Plot  

 

 

 
Fig. 5.BPSO Water Temperature Correlation Test (1/3)  

 

 

 
Fig. 6.BPSO Water Temperature Correlation Test (2/3)  

 

 
Fig. 7.BPSO Water Temperature Correlation Test (3/3)  

 

 

 
Fig. 8.BPSO Water Temperature Histogram of Residuals  

 

Thus, the AIC residual displayed small correlation, as 

indicated within 95 % confidence limit in the correlation plots 

with low deviations number. Therefore, all criterion models 

generated using PP method 01 for BPSO-based NARX were 

measured efficient and exact illustrations of the nonlinear 

system. 

The Water Temperature BPSO-NARX models for AIC, 

FPE and MDL models are in Table IV. 

 
TABLE VI 

OUTPUT MODEL 
Criterion Output Model  

AIC y(t) = 2.0880×10-4 u(t-4) + 1.0017 y(t-2)  

+ 8.3542×10-3 y(t-1)*y(t-3) – 2.8747×10-3 y(t-1)*y(t-2)  

– 5.4969×10-3 y(t-2)*y(t-3) + ε(t) 

FPE y(t) = 1.7413×10-4 u(t-4) + 1.0019 y(t-2)  

+ 2.1629×10-7 u(t-1)*y(t-4)  + 1.9333×10-3 y(t-1)*y(t-4) 

+ 3.0495×10-3 y(t-1)*y(t-3)  – 5.8121×10-4 y(t-3)*y(t-3)  
 – 4.4207×10-3 y(t-2)*y(t-2) + ε(t) 

MDL y(t) = 1.0019y(t-2) –  8.1381×10-5 u(t-2)*u(t-3)  

+ 1.9125×10-3 y(t-3)*y(t-4) + 6.9128×10-3 y(t-1)*y(t-1)  

– 8.8446×10-3 y(t-1)*y(t-2) + ε(t) 

 

Based on Table VI, the output models selected using 

different criteria for PP 01 were reported. Consequently, the 

AIC and MDL models were found to be more effective with 

the minimum number of parameters of the output model. The 
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parsimonious model structures are an indication of good 

model fit as the smallest quantity of parameters were 

necessary to supply the most beneficial fit for the data. 

 

VI. CONCLUSION 

The nonlinear modelling for water temperature using 

BPSO algorithm based NARX structure was presented. The 

model structure selection of polynomial NARX has been 

employed on BPSO algorithm for the SDPP identification. 

Fitness and CRV investigation were conducted based on 

several models selection criteria such as AIC, FPE, and MDL. 

The combination of interleaving without magnitude scaling 

technique (PP 01) recorded the best combination due to its 

lowest total CRV from both training and testing sets and low 

fitness value. Subsequently, the AIC model of PP 01 was 

observed to be a slightly greater model because it had low 

fitness values, besides the least CRV on the testing set 

compared to FPE and MDL. Moreover, AIC and MDL 

recorded lesser parameter number of the output model. 

Overall, all criterion models generated using PP 01 for 

BPSO-based NARX were considered valid and accurate 

representations of the system with AIC model presented as 

the best model. It can be seen through the high R-squared, 

small MSE value, uncorrelated residuals and a minimum 

number of parameters in the output model. The results are 

encouraging and should be explored with another type of 

dataset, for instance, the steam temperature dataset that can 

also be collected using SDPP. 
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