UNIVERSITI TEKNOLOGI MARA

ASSESSMENT OF *OIDIUM* DISEASE ON RUBBER LEAVES BY DRONE-BASED MULTSPECTRAL IMAGES

NURUL IRAFATIN BINTI ROSLEE

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatic (Hons.)

Faculty of Architecture, Planning and Surveying

July 2019

AUTHOR'S DECLARATION

I declare that the work in this disertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurul Irafatin binti Roslee				
Student I.D. No.	:	2016490794				
Programme	:	Bachelor of Surveying Science and Geomatics (Hons) AP220				
Faculty	:	Architecture, Planning & Surveying				
Thesis	:	Assessment of Oidium Disease on Rubber Leaves by Drone-Based Multispectral Images				
Signature of Student	:					
Date	:	July 2019				

Ш

ABSTRACT

Oidium Leaf Disease is one of the most infected rubber leaf disease in Malaysia. A severe outbreak of this disease may cause an annual yield loss with 20% decrement of latex production in a rubber plantation. Recent technology using unmanned aerial vehicle (UAV) has potential to provide cost effective data acquisition for the estimation of rubber leaf disease such as Oidium Disease. The UAV is able to facilitate spatially and allow temporal flexible data acquisition using a compact camera payload. Thus, the aim of this study is to assess drone-based multispectral images for Oidium disease on rubber leaves using spectroradiometer. This study is carried out at Experimental Rubber Plot, Research Station Malaysian Rubber Board, Kota Tinggi, Johor. The map of Oidium Disease severity index level is generated by using Support Vector Machine (SVM) Classification. From the severity index level in the map, Oidium Disease was identified by low absorption of light at the red band (0.02) and medium absorption at near-infrared band (0.32). The level of absorption from the results indicates that the leaves have less chlorophyll since it was very severely infected with Oidium Disease. The finding of this study shows that low-cost remote sensing technology which deploys the UAV and digital compact camera is potentially can be used to determine the condition of rubber tree caused by leaves disease.

TABLE OF CONTENT

PAGE
Ι
II
III
IIV
V
VI
IX
XI
XII
1
1
3
6
6
7
7
7
8
9
11
11
11
12
14

2.4 Unmanned Aerial Vehicle (UAV)	16
2.4.1 UAV Photogrammetry	18
2.4.3 UAV for Precision Agriculture	19
2.5 Vegetation Indices	21
2.6 Spectral Reflectance in Vegetation	22
2.7 Image Classification in Remote Sensing	23
2.8 Handheld Spectroradiometer Observation	25
CHAPTER THREE: METHODOLOGY	26
3.1 Introduction	26
3.2 Research Methodology	27
3.3 Research Planning	28
3.3.1 Research Tools and Instruments	28
3.4 Data Acquisition	35
3.4.1 GPS Observation	35
3.4.2 UAV Data Collection	37
3.4.3 Spectroradiometer Data Collection	38
3.4.4 Sample of Rubber Leaves	39
3.5 Data Pre-Processing	40
3.5.1 Mosaicking	40
3.5.2 Georeferencing	43
3.5.3 Layer Stacking	44
3.6 Data Processing	45
3.6.1 Vegetation Indices	45
3.6.2 Image Classification	47
3.6.3 Spectroradiometer Spectral	49
3.6.4 Accuracy Assessment	49
CHAPTER FOUR: RESULT AND ANALYSIS	51

4.1 Introduction	-			 	
4.1 Introduction					
	4.1 Introduct	ion			

51