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ABSTRACT

Nonlinear problem is one of the most frequently occurring problems in scientific
works especially in science and engineering applications. Amongst the most popular
schemes are the Newton's method and homotopy perturbation method. However, the
duration to converge are heavily depends on how close the guess value is to the real
rootls and the rate of convergence for Newton's method is only order-2 and its

efficiency index is only {j2 ~ 1.41421. Secondly, some of the methods utilized
successive approximation procedure to ensure every step of computing will converge
to the desired root and one of the most common problems is the improper initial
values for the iterative methods. Thus, this particular research aims to develop an
improved numerical solution for solving nonlinear equations by using hybrid concept
and higher order correctional terms. Higher order successive approximations are
applied and evaluated to ensure it converges to the desired rootls more effectively.
Two sets of schemes of hybrid algorithms, the Higher Order Taylor-Perturbation
method (HTP) and Higher Order Homotopy Taylor Perturbation method (HHTP)
with higher order correctional terms up to 6th order are derived and evaluated. The
theoretical and numerical results used to verify the stability, consistency and
convergence of the schemes. Numerical examples and comparison studies are used to
illustrate and to support the efficiency of the suggested method. Furthermore, a new
definition of computational order of convergence are defined and analyzed. Next, in
order to jumpstart the process of iteration, an improved way to choose the initial
value is also discussed and evaluated numerically. As a result of hybriding several
methods, both improved algorithms of HTP and HHTP established faster, more
reliable and better outputs, in comparison to other classical methods. The
computational tools such as Maple 14 and Mathematica 7.0 are used for this research.
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CHAPTER ONE 

INTRODUCTION 

1.1 OVERVIEW 

Root finding has been one of the oldest nonlinear problems in mathematics, 

yet it is far from being solved. Every time a solution is suggested by a researcher, 

algebraically or numerically, each has its own limitations and boundaries of 

applications and level of convergences. Researchers are long to create an overall 

formula that applicable unlimited field, not only in science and engineering. 

Furthermore, over the decades we have observed an increasing trend towards 

replacing costly real-life tests and experiments with computer simulations, from 

automobile crash tests to space-crafi auto-pilot. This emerging trend prompts the need 

for reliable and efficient self-verified computing methods that can guarantee 

prediction of results one hundred percent. This also includes in cases of root-finding 

where calculation of finding roots are more toward computer-oriented and no longer 

manually numerical calculated. An approximation in decimals can be always obtained 

to any degree of accuracy which may be required. The ordinary tables give the values 

continue to four decimal places; but tables recently have been computed extending to 

twelve or even higher decimal places. These are the factors that motivate us to find a 

more reliable, faster and stable way to solve nonlinear equation problems. 

1.1.1 A Brief History of Root Finding 

Even though root finding of nonlinear equations of f (x) = 0 equal zero might 

be an ancient problem, but it is still relevant today. This is because in most nonlinear 

cases, it is very difficult to obtain an analytical solution of the equation, f (x) = 0. It 

is one of the significant elements in mathematics and is the determination of solutions 

to single-variable equations or to systems of n equations in n unknowns which is used 

enormously in science and engineering fields. The basics of the method revolve 

around the determination of roots, an analytical solution to an equation (or a system) 

which able to produce with an exact answer. Some equations, such as
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