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ABSTRACT

In this work, the effect of tantalum (Ta) substitutions at the Sr-site on superconductivity
ofTlo.9Bio.lSr2-xTaxCao.9Yo.lCu207 (x = 0 - 0.40) series and the effect ofnanosize MgO
particles on 1212 phase fonnation and transport critical current density, Jc in external
magnetic field for Tlo.9Bio.lSrI.9sTao.osCao.9YO.ICU207 + yMgO (y = 0 - 0.8 wt.%) series
and Tlo.sPbo.sSr1.8Ybo.2CaCu207 + zMgO (z = 0 - 0.80 wt.%) series superconductors
were investigated. Results of tantalum substitution at Sr-site in Tlo.9Bio.l Sr2_
xTaxCao.9YO.ICU207 (x = 0 - 0.40) series showed that the best superconducting behavior
occurred at x = 0.05 with Tconsetof 96 K and T cztro of 65 K. Higher Ta substitution caused
gradual deterioration of superconductivity, accompanied by a change of nonnal state
behavior from metallic to semiconductor-like behavior with increasing Ta. SEM
investigation showed changes in grain size with Ta substitution. Results of electrical
measurements on Tlo.9Bio.ISrI.9sTao.osCao.9YO.lCU207 + yMgO (y = 0 - 0.8 wt.%) series
superconductor revealed the highest transport critical current density Jc (at 20 K) of28
A/cm2 aty = 0.2 wt.%. Samples withy = 0 - 0.40 wt.% showed a rapid drop ofJc at low
fields « 0.1 Tesla) before a slower deterioration at higher fields (> 0.1 Tesla). This
indicates the presence of weak links at low fields and dominance of strong links at
higher fields. The smallest drop of Jc was observed for sample y = 0.2 wt.%. SEM
results for these series showed no significant difference in microstructure between MgO
added samples. Results of electrical measurements on Tlo.sPbo.sSrI.8YbO.2CaCu207 +
zMgO (z = 0 - 0.80 wt.%) series revealed the highest Jc (at 30 K) of 16 A/cm2 for z = 0.1
wt.%. The behavior of Jc in external fields also indicates presence of weak links at low
fields. The smallest drop ofJc was observed for z = 0.1 wt.%. SEM micrographs of MgO
added samples showed smaller grain size compared to pure samples. The enhanced Jc at
y = 0.2 wt.% for the Tlo.9Bio.1SrI.9sTao.osCao.9Yo.ICu207 + yMgO series and z = 0.1 wt.%
for the Tlo.5Pbo.sSrl.8YbO.2CaCu207 + zMgO series is suggested to be due to flux pinning
as a result of the MgO additions. In conclusion, substitution of Tao.os at Sr-site
successfully stabilized the 1212-phase during synthesis ofT11212 superconductors. The
addition of a moderate amount of nano-MgO particle before fmal sintering improved
transport critical current density and enhanced flux pinning ability of the Tl-1212
superconductors.
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CHAPTER 1

INTRODUCTION

Superconductors are materials that have zero resistance when applied with current flow.

Superconductivity was first disco vered in 1911 by the Dutch physicist, Heike

Kamme rlingh annes, who was studying the resistance of solid mercury at cryogenic

temperatures usin g the recently-disco vered liquid helium as a refrigerant (annes, 1911).

At the temperature of 4.2 K, he observed that the resistance abruptly disappeared. In

1913, lead was found to superconduct at 7 K. Another materials tungsten and nobium for

example superconduct below 10K.

Man y other elem ents , compounds and alloys were soon found to be superconductors. In

1941 another conventional superconductor, niobium nitride (NbN) was found to

superconduct at 16 K. In 1950, V3Si was found to superconduct at 17 K. In the

following year in 1954, an alloy of niobium and tin (Nb3Sn) with a critical temperature

of 18.1 K was discovered. In 1970, Nb3(AIGe) was found to superconduct at 21 ~ while

in 1973, Nb3Ge was found to superconduct with Tcof23 K (Gavaler, 1973).

Another important characteristic of superconductor is perfect diamagnetism.

W.Meissner and R. Ochsenfeld discovered the Meissner effect in 1933 (Bourdillon et al.

1994) . This is the capability of the material to eliminate an external magnetic field from

its interior. The important behavior for this phenomenon is the ability of superconductor

material to levitate permanent magnets on their surface .
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