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ABSTRACT

Over the past years, many robots have been devised to facilitate agricultural activities
(that are labor-intensive in nature) so that they can carry out tasks such as crop care or
selective harvesting with minimum human supervision. It is commonly observed that
rapid change in terrain conditions can jeopardize the performance and efficiency of a
robot when performing agricultural activity. For instance, a terrain covered with
gravel produces high vibration to robot when traversing on the surface. In this work,
an agricultural robot is embedded with hine learning algorithm based on Support
Vector Machine (SVM). The aim is to evaluate the effectiveness of the Support
Vector Machine in recognizing different terrain conditions in an agriculture field. A
test bed equipped with a tracked-driven robot and three types of terrain i.e. sand,
gravel and vegetation has been developed. A small and low power MEMS
accelerometer is integrated into the robot for measuring the vertical acceleration. In
this experiment, the vibration signals resulted from the interaction between the robot
and the different type of terrain were collected. An extensive experimental study was
conducted to evaluate the effectiveness of SVM. The results in terms of accuracy of
two machine learning techniques based on terrain classification are analyzed and
compared. The results show that the robot that is equipped with an SVM can
recognize different terrain conditions effectively. Such capability enables the robot to
traverse across changing terrain conditions without being trapped in the field. Hence,
this research work contributes to develop a self-adaptive agricultural robot in coping
with different terrain conditions with minimum human supervision.
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CHAPTER ONE
INTRODUCTION

1.1 RESEARCH BACKGROUND

In the last decades, an increase number of robotic systems has been developed

S| had

to assist human workers in agricultural activities, for i robot

for fertilization, spraying, fruit harvesting and transferring process [1][2][3]. Recent
advances in software have allowed the robots to possess the ability to adapt to their
environment [4] by learning from the data about the surrounding. One of the
approaches is the deployment of machine-learning techniques [5]. In an agricultural
field, the terrain condition has an affects to the performance of the robot in carrying
out a task. Gravel, for instance, produces high vibration to robots traversing on such
surface. In this work, two machine-learning techniques based on support vector

hine (SVM) are proposed as a learning algorithm to distinguish different terrain

3

conditions in an agricultural field. To eval the effectiveness of the algorithm, a

track-driven mobile robot is embedded with a MEMS accelerometer used to measure
vibration data which is then analyzed and classified using SVM. Having knowledge
about the terrain condition, the control of the motor drive can be adapted to produce
the thrust required for the mobility of the robot when traversing on changing terrain

conditions in the field.



12 PROBLEM STATEMENT

The rapid growth of the world population poses a threat to the
sustainability of food supply. The traditional agriculture industry is labor
intensive. Manual process, such as weeding and harvesting process limit the
production of quantity crops. Agriculture robotics plays an important role to
optimize the production of crops and ensure the sustainability of food supply
in the future. Various types of robot are being developed to accomplish labor
intense task such as planting, spraying and harvesting. The basis for the
feasibility of such agriculture robots is the ability to traverse across various
terrain conditions. This is due to the fact that agriculture terrains can be quite
challenging even for human to navigate off road vehicles. With such
knowledge on the terrain, the robots can improve its performance stability
and path planning for autonomous operation. The first step in enabling
autonomous operation is implementing proprioceptive sensors such as
accelerometer to collect data for the purpose of terrain classification because
the current technology using image processing for terrain classification suffer
few drawbacks such as it must have enough light for the system to work

properly. In this work, vibration-based terrain classification is proposed.

With the help of hine learning techniq an robot is able to
know the terrain condition and adapt its behavior accordingly for a safe
operation over an unknown terrain.

The first phase in building an autonomous agriculture robot is to solve
the main objectives of the research which to simulate the behavior of the
track-driven robot and to understand the interrelation between the track —
terrain when it traversing. Then the robot is implemented with a learning

machine to enable the robot distinguish between terrains.



1.3 RESEARCH OBJECTIVES

A number of objectives in this work allow the understanding the relationship

track robot and the classification process. These are as follows:

A5 Kinematic behavior of a track-driven agriculture robot
In order to understand the behavior of a track-driven robot, a simulation of the
kinematic behavior of a track-driven agriculture robot is needed. The motion of the

robot is simulated and compared to the lab control environment.

2. Experiment Study on the Track-Terrain Interaction.

In a real agriculture field, a robot is exposed to vibration of the terrains. An
experiment is needed to be conduct on the track-terrain interaction when an
agriculture robot is traversing on the sand, soil and gravel. Then the data in term of

vibration of three type of terrain will be recorded.

8y Vibration-based terrain classification using SVM and HSVM.

The classification algorithm will be considered using a Support Vector Machine and
Hierarchical Support Vector Machine. Both algorithms will be subjected to training
and test pattern of vibration of three types of terrain. Then both algorithms will be

compared in term of accuracy

4. Development of a Track-Driven Agriculture Robot
Before the experiment is conducted, a robot is needed to aid the experiment process.
Both mechanical and electrical is developed which include the sensor and the track

system.



14  SCOPE OF RESEARCH

In the background of research provide the necessary information to set up the
scope of research. A thorough review of the literature gave insight on what is the
challenges and limitation of the agriculture robot behave in the field .The agriculture
robot research is in the initial phase, the scope covers four interrelated area shown in

Figure 1.1

FIGURE 1.1
Scope of the Research Project
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Due to wide scope in the autonomous agriculture robotics, the scopes are limited and
listed as follows:

During the data acquisition process only four types of data is used as input
for the learning algorithm (X-axis acceleration, Y-axis acceleration, Z-axis
acceleration, and RPM (Speed of the wheel). In the experiment of the track
— terrain interrelation covers only the soil, sand and gravel. Only three
types of terrain is covered in the experiment which to create a control
environment in the laboratory.

In the mechatronics section, there are two robots are developed in term of
mechanical and electronics for both real scale and small scale robot. Only
the small scale robot is used during the experiment and the robot with the
flipper arm is the concept for future autonomous agriculture robot.

In term of software, the classification process is done offline in MATLAB
and not implemented in the robot main CPU onboard.

The simulation of kinematic behavior of the track-driven robot is assumed

to traversing in flat surface for the trajectory path section.



1.5 RESEARCH METHODOLOGY

The proposed research begins with discussing the problems and the literature
review on the system and technology available. Then modeling and simulation is done
on the mobile robot to study the output kinematics using MATLAB and ANSYS
software to understand the behavior of the robot. After the modeling and simulation,
the fabrication process for both mechanical and electrical is proceed for the robot. The
test bed then is fabricated which consist of different type of terrain for data extraction.
The extracted data is implemented on the classification algorithms for terrain
classification process which shown in Figure 1.2. Next step leads to data organization

and analysis and end up with report writing.

FIGURE 1.2
Flow Activities for the Methodology
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i) Problem Analysis and Literature Review

Review of current research will be in agriculture robotics as well as
computational intelligence of technical systems and the limitations of the

computational intelligence will be taken into consideration.

ii) Modeling and Simulation for the Track Robot

The mathematical modeling for the track agriculture robot is done based on
the previous researcher. The model simulated on the kinematic simulation of the track
driven robot and is compared to a small scale robot from actual system. The

kinematics for the robot is done using MATLAB Simulink based on few ion:

In this flow includes the design of the mobile robot using CATIA and
simulation using ANSYS software to understand the expected design output in term

of Forces on three axes (X, Y and Z) on the robot structure.

iii) Devel of the Mechanical and Electrical System

During this process, both mechanical and electrical will be develop
based on the modeling and simulation data to decrease the failure rate of the
robot. The mechanical structure is fabricated at UiTM advance machining
lab using 3 axis CNC machine for precision and the electronics will be
develop in the Robotic Research Lab.

iv) Development of Test bed for Data Extraction

The motivation for this chapter is to design and fabricates a test bed
for data extraction for next the chapter. The purpose of the test bed is to
create a control environment for the robot which consists of exchangeable
plates of sand, gravel and soil. Data is extracted using accelerometer from

SparkFun Electronics and encoder in term of accelerations and speed.



v) Data extraction and implementation of Terrain Classification Algorithm

The aim in this phase is to evaluate the data from the test bed and
Computational Intelligence which includes Support Vector Machine and Hierarchical
Support Vector Machine is attempted. The objective function for the algorithm is to
construct the optimal separating hyper plane to distinguish between the data sets. In
higher dimensional feature space, kernel function is used to construct the mapping for

the Support Vector Classification.

vi) Data Organization and Analysis

Both results for the simulation and small scale robot are compared. Such
comparison provides useful information for the development of the real size track
robot. For the classification result from SVM and HSVM is compared and used for
future integrated in the robot.

vii) Report Writing
In the last phase, all the data from the problem statement until the analysis

will be compile and concluded accordingly to the format required by the Universiti
Teknologi MARA standard.



1.6 SIGNIFICANCE OF RESEARCH

An autonomous robot is an exciting and challenging research for
reasons. The first reason is the provide a computer to be able to sense real
world properties such a terrains into an learning machine or intelligent
machine to detect pattern, identity features and navigates thru terrains. Thus
Support Vector Machine is chosen and compared with Hierarchical Support
Vector Machine in term of classification accuracy.

To build a track-driven agriculture robot, a particulars understanding
of the interaction between track and terrain is needed in term of kinematics.
The knowledge is needed to understand the behavior of the tracks during
motion and how the tracks behave during turning.

In the development of autonomous robot, a terrain classification is a
compulsory to enable the robot to learn about the surrounding terrain. This
knowledge then is used by the robot to navigate thru the terrain and avoid
being trapped in the terrain. This kind of situation is unwanted when the
robot is picking ripe fruits thus affecting the quantity of the crops can be
collected.



1.7 OUTLINE

This thesis is divided into six chapters as summarized below. Chapter
2 is the literature review which describes the past research that has been done
in this field and begins with findings on the artificial intelligence and current
technology used by others. This chapter provides the explanation on artificial
intelligence. Chapter 3 aims to present the development of the track-driven
agriculture robot during the prototype development. This also includes the
mechanical, electrical development and also simulation of the track-driven
robot which done using MATLAB. In this chapter the result is of the
simulation compared to small scale robot from actual system.

Chapter 4 contains the leamning algorithm of the robot which
elaborate for both Support Vector Machine and Hierarchical Support Vector
Machine and which involve the fundamental theory of the SVM and the
learning model for the classification. The algorithm uses four types of kernels
which include the Linear Function, Quadratic Function, Polynomial Function
and Radial Basis Function. The data collection is done in a controlled
environment which imitator the real agriculture terrain. The collected data
then will be used for terrain classification. This chapter will briefly discuss
on the test bed design and procedure during the data extraction, Chapter 5
discussed on the result and analysis of the classification obtained from the
Support Vector Machine and Hierarchical Support Vector Machine. Chapter
6 summaries all the work in the thesis is summarized. The current work is
discussed with summarized results and recommendation on future works are
proposed in order to overcome the problem and limitation in support vector

machine implementation.

10



CHAPTER TWO
LITERATURE REVIEW

2.1 INTRODUCTION

This chapter discusses the findings on a different type of mobile robot
available and the intelligence system which leads to a terrain classification.
This chapter provides the explanation on artificial intelligence used in the
research which is Support Vector Machine and Neural Network. All the

reviews based on journals, books, and online articles related to the project.

2.2 AGRICULTURE ROBOTICS

Autonomous navigation technologies for off road terrain are rapidly
researched and developed [6]. It is one of the crucial elements needed in
agriculture robotics development. This technology not only being employed
in military but also for normal civilian purposes for wide-area environment
monitoring [7] and new terrain explorations. The challenges for such system
are to develop the ability to sense and know the environment and manipulate
the information for feedback control. In the field of research, there are many
type of robot developed and available for commercial used. There are
different a categories of mobile robot such as wheel robot, tracked robot,
legged robot, aerial robot, underwater robot and reconfigurable robot

Many robotic systems have been developed to ease the work of
human in agriculture which is labor intensive in nature. The aim of

developing autonomous robots for agriculture i is to

human supervision during tasks execution such as harvesting or crop care.

In agricultural robots is equipped with a p vision

system to perform visual navigation [8]. For example, a low-cost robot is
equipped with a vision control system to provide a visual navigation for

fertilization and spraying artificial pollination [9] in a greenhouse

envi Comp vision sy are also installed in a robot to guide it

11



to travel between the crop rows [10] and to perform automatic recognition on
the fruit conditions before harvest [11] or for fruit grading [12]. On the other
hand, there is also research on fusing the agricultural robots with machine-
learning techniques [5][13]). For example, a harvesting robot [14] is installed
with a statistical machine-learning method to recognize the maturity of
apples. A computer vision system is integrated with artificial neural networks
to perform leave image classification for sunflower crops [15]. In a different
approach, a normal CCD camera [16] is used for the harvesting process. The
robot is equipped with cutting tools and a camera with the capability to
differentiate between ripe and unripe crops. Some researcher uses more than
one sensor [17] to increase the classification rate during the harvesting
process. The system uses both binocular-vision and sonar to classify using
hue and saturation of color histogram during the harvesting operation. An
interesting idea came from a researcher [18] which uses a robot for weeding
process. The robot is designed to be able to adapt the speed based on the size
of the paddy field and the soil condition.

Terrain classification using a computer vision based system [19] is
popular. A system developed by [20] is able to classify terrain using images
provided by a single camera and it consumes less power compared to the
laser range finder. In [21], a monocular camera is used to provide knowledge
about the terrain.

lagnemma and Dubowsky [22] measured the vibration profile of a
low speed rover running over different terrains. The vibration is measured by
an accelerometer in three axes (X, Y, and Z). Each terrain produces a
characteristic profile which can be used for classification. Compared to the
vision based system, this method consumes less energy and computation
time. Further, the vibration based approach does not depend on a good
lighting condition which is necessary for a vision based system [23]. A
similar research on terrain classification has been done using a crawling robot

[24] equipped with an Inertial Measurement Unit (IMU).

12



2.2.1 Wheeled Robot

The wheeled robot usually used in the research field [25] due to the simpler
design then the legged or tracked robot. The robot usually design and develop for flat
movement and not for rough terrain (low friction are or rocky surface). There is no
limit numbers for the wheel robot in the development which based on the application
example from Henan University using two wheeled robot [26] with natural instability
body mimicking the inverted pendulum, other researcher uses three wheeled [27]
with the Modular Universal Unit (MUU) perform as pitch, yawing and roll. This is
achievable with passive rollers at center of the cylindrical shell and forming the
motion for the robot. The four wheeled robot [28] is the most preferred by researcher
due to ease on control and low cost to develop. Most of the cases use the skid steer
[29] which has higher steering capabilities. In rare cases, researcher uses eight
wheeled robot shown in Figure 2.1(b) for climbing stairs and uneven terrain. Higher
level of controller is needed to control the wheels for optimizing the moving
efficiency and speed.

FIGURE 2.1
Different type of wheeled robot (a) P2 —AT robot [29], (b) Octal Wheel [30]

There are many type of steering system in the development of wheel robot for
example skid steer drive, differential drive, and synchronous drive. The common
drive type used in the research field is the skid steer drive system [31] which uses a
separate motion of the wheel as the steering system and popular due to mechanical

simplicity and low cost for development. The skid steer drive system usually used in

13



the tank and works when the right and left wheel is driven independently with
different speed and resulting in the robot to skid on the surface. This system capable
of archiving higher turning radius compared to other type of robots which make it
highly maneuverable depending on the terrain. The differential drive system [32]
mechanism works when two set of motor is control independently and easy to be used
by beginner as shown in Figure 2.2. Such drive system with a different friction and
motor profile resulting in difficult for a straight line movement. For the synchronous
drive system [33], the motion and direction is made possible with the sets of motor
system mechanically coupled which move in the same speed and direction.
FIGURE 2.2

Different type of drive system (a) Pioneer 3-DX [34] with differential drive system, (b) Quadriga
robot [35] with skid steer drive system, (c) Spider robot with synchronous drive system [33]

14



2.2.2 Tracked Robot

In the real world application the usage of the mobile robot is limited
due to capability of the robot to traverse in the urban environment or
agriculture field. Over the years, rapid development of track robot has been
made to overcome such challenge. The platform uses track compared to
wheel for motion and navigate across obstacle. To overcome the locomotion
problem, a platform called AZIMUT ([28] has been develop by University of
Sherbrooke shown in Figure 23. The platform uses four track with
independent articulation with a three degree of freedom (DOF) on the joint.
The freedom allows higher flexibility and adaptability in the movement. A
different approach is presented by Robotic Department of Ritsumeikan
University using a hybrid [36] track mechanism during the operation. The
hybrid track mechanism use a fixed track mechanism and transformable track
mechanism which more adaptive to uneven or bumpy terrain. The basic idea
of a track drive system is to use sensors for closed loop feedback when
traversing across terrain and more complex algorithm is needed for learning
about the environment. However with self-adapting mechanism the mobile
track robot able to efficiently adapt over a terrain with different configuration
without sensor feedback thus reducing the time lag. Similar research has
done in agriculture field which is used in the paddy field. The researcher uses
Laser range finder and Inertial Measurement Unit [37] as path finder and to

stabilize the robot during traversing on the irregular paddy surface.

FIGURE 2.3
Different type Tracked Robot (a) MOBIT [38] from the Beijing Institute of Technology (b)
CUMT- III robot [39], (¢) AZIMUT track robot from Ritsumeikan University [40]

©

15



2.2.3 Legged Robot

Legged locomotion is common in the nature and known to have better
adaptability when walking in rough nature terrain compared to wheel or track robot.
This has motivated researcher to develop a legged robot which able mimic animals or
humans. A researcher in Waseda University has developed a legged rat robot [41] that
possesses body and leg comparable to real rats. The robot has 3 degree of freedom
(DOF) with two active and one passive on each legs. The robot uses four legs
mimicking the real rats performing task in a most natural way like pushing levers.
Other non-conventional motion is the hopping motion which required a complex
motion control [42] and to avoid reaction force from damaging the robot actuator. The
challenge of creating legged robot to move efficiently in unstructured terrain has
inspire Portsmouth University to develop an eight legged [43] robot mimic the motion

of terrestrial crab in Figure 2.4.

FIGURE 2.4
Different type of Legged Robot (a) ScarlETH [44] with two legs (b) Eight Legged robot [43].

The actuator uses a pneumatic drive system to power up the joint with high
power to weight ratio on each limb for crossing surfaces and crawl using insect gait.
The insect gait or locomotion has higher stability in motion compared to humans or
mammals using dynamic stability [45] like an inverted pendulum motion. The low
center of gravity of an insect uses a static stability [46] with at least three legs contact

with the ground to maintain balance.
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2.2.4 Reconfigurable Robot

The configurable robot [47] is more flexible compared to other mobile robot.
The design allows the mechanism of the robot to traverse on the unstructured
environment and external condition and optimizing the task given. The M-Block robot
from Computer Science and Artificial Intelligence Lab MIT is design with nobility for
self-assembly and self — reconfigurable [48] which uses magnetic bond and angular
momentum actuator as shown in Figure 2.5. The actuator is coupled with flywheel
employing high torque motion breaking the bond between the modules generating

motion for the robot confi ion. Other her uses dynamic connection [49] for

motion and self-confi ion. The dynami b the robots module
enable of changing in structure based on the specified task or in this case intelligent
furniture.

FIGURE 2.5
Different Type of Reconfigurable Robot. (a) M-Block from MIT Labs,
(b) Roombots [50], (c) Planar Catoms [51].
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23  SENSORS

For agriculture robot, the capability to interact with changing
environment is the important key aspect in construction of an autonomous
robot. In order for successfully constructing such behavior based architecture
[51] is to have capacity to react to sensory inputs for an instance using IR

distance sensor in obstacle avoidance.

2.3.1 3-D Imaging

Researcher from Institute of Technology Pasadena [52] uses stereo
vision in the rover to detect potential terrain vulnerabilities before traversing
across it. The rover navigates using stereo vision by plotting a local map of
surrounding area and analyzed for most effective travelling path.

In contrast to stereo camera, LIDAR scanner is an optical remote

1

sensing logy which the di by r ling the object with
laser pulse thus creating an image of the object. The sensor is used by the
University of Applied Sciences Osnabriick [53] for detecting obstacle or
plants in the fields. Such advantages of the sensor not influenced by sunlight
enable 24 hours operation in the field maximizing the robot efficiency.

Visual sensing and mapping offers attractive benefits for mobile
terrain robot. Using Stereo vision [54] extensive amount of information on
the terrain can be obtained but with few drawbacks of complexity in term of
processing power and illumination of the terrain object surface causing

repeated patterns.
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2.3.2 Mechanical Sensors

In a different perspective, University of Technology Thonburi Thailand [55]
uses Inertial Measurement Unit or IMU for acquiring data of the terrain which has
been traverse by the robot. The concept of the IMU in the system works completely
differently than a LIDAR or optical sensor which detects and classified terrains before
the robot traversing on it. The IMU is a mechanical sensor which measured the
acceleration when traversing on the terrain and then classified it afterwards.

Other method of terrain classification uses system can be called “sensing by
feeling” since it uses an internal sensors to determine the terrain surface. The concept
is the same as human navigating a car on the rough off road terrain using “feeling of
touch” to feel the road condition rather using navigation data to adjust the steering or
speed. Such simplicity comes with a few drawbacks such as noise either from the

sensor or the mobile robot that can reduce the efficiency of the terrain classification.

2.3.3 Acoustic Sensors

On the other hand, from Ocean System Engineering Research Department

Korea [56] uses acoustic sensor or sonar in their underwater multi legged robot for
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24  INTELLIGENT SYSTEMS

Humans have always been fascinated with their own capabilities to think and
to learn. They tend to imitate these capabilities by using different approaches. Such
methods are implement using computer programs to imitates these intelligent based
on a special algorithms. Some would ask what are intelligent robots or what it will
able to do or imitate. According to Robotic Industrial Association (RIA) [51] a robot
is a re-programmable, multifunction and design to perform a variety of tasks.

An intelligent machine [57] with the ability of executing assignment by
themselves without human intervention is called autonomous robots. A set of sensors
with processing capabilities are needed to enable a robot to manipulate its actuators
for autonomous activities. Autonomy is a system capable to run in the real-world
environment without external control within a period of time.

Recent challenges of implementing this intelligent machine are introduce in
DARPA Grand Challenge [58] on March 2004. It is challenge prove to be a difficult
task for 19 unmanned vehicles through harsh route 142 miles across the Mojave
Desert.
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2.4.1 Neural Network (NN)

One of the famous artificial intelligence used by many researchers is the
Neural Network. It is a learning machine used to predict the group belonging for a
data. The learning machine is a simplified model of a biological neuron system [59]
which contained high interconnected neural of computing elements with the ability to
learn and gaining knowledge for use. The Neural Network is a supervised learning
which need an input from the user to “label” the data for the classifications logic to
work compared to the unsupervised learning has the capabilities to categories the data
based only from the raw data inputs. According to Iran University of Science &
Technology (IUST) in their research, Neural Network has the capabilities to classify
cardiac arrthythmias [60] with the 100% accuracy using Multilayer perceptron (MPL).
The input from the HRV signals obtained from the databases and then is classified in
to four type of life threatening cardiac arrhythmias.

In the off road terrain, a critical algorithm is needed to guide an autonomous
robot to safety. Based on the research by Agency for Defense Development Korea
which uses Neural Network Classification with Speed Up Robust Features (SURF)
[6] for off road terrain classification. The method uses supervised learning which
extracts features distinguish the ground truth image and producing higher
classification rate compared to the wavelet classifications.

A comparative study of classifiers for Thalassemia screening attested SVM a
better performance than K-Nearest Neighbor [61]. SVM and K-Nearest Neighbor has
been used [62] for large scale hierarchical text classification and conclude that k-NN
performs better than SVM. The classification of sonar signals [63] is done using
Neural Networks and Decision Trees and the results shows, that the Neural Network
clearly outperforms various Decision Tree classifiers.

In recent years the use of different classifiers in robotic applications has been
studied. In a robotic soccer formation [64], comparison between SVM, k-Nearest
Neighbor, Naive Bayes and Neural Networks is done and conclude that SVM

performs best when the test set is independ Few [65] ge to achieve 100%
accuracy using a Neural Network to recognize scenarios based on information

provided by ultrasonic and light sensors.

21



2.4.2 Fuzzy Logic

The fuzzy traversability index [66] has been used by Howard [67] as the rule
base for quantifying the travel of a terrain by a mobile robot which acquired from
image data to measure the terrain classifications. Based on the algorithm [68] the
terrain can be classified into four types which is terrain roughness, hardness, slope
and discontinuity. Roughness can be divided in to two; indicating surface irregularity
and coarseness which also can be asserted as rough or smooth of the surface.
Hardness is to measure the hardness of the surface that can influence traction of a
mobile robot. Slope is measure based on the incline or decline of the mobile robot to
the ground that can be classified as steep, flat or sloped. The discontinuity is to

representing terrain such as cliffs or ravines.
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2.4.3 Support Vector Machine (SVM)

Few algorithms can be used for the terrain classification such as Artificial
Neural Network (ANN), State Vector Machines (SVM) or Fuzzy Logic. Many
researchers use Support Vector Machines (SVM) as their classification algorithms
[23] because of high generalization capability compare to other method.
Massachusetts Institute of Technology (MIT) [69] developed an algorithm to be
implemented on planetary rovers to reduce human supervision using two parameters
which is determine soil shear strength based on the internal friction angle and
cohesion of the soil [70].

Some of the researcher uses probabilistic modeling technique [71] for high-
speed rough terrain mobile robot. They results shown in well-known terrain the

mobile robot can accurately predict the performance, however in unknown terrain the

plexity and imprecise terrain

accuracy declining cause by ion of terrain cc

knowledge.

Classification algorithms have been applied to a large amount of real-world

.

p and much

was done to compare the performance of different
classifiers. The classifiers such as Naive Bayes [72], Decision trees and SVM is
compared on 13 binary datasets from the UCI repository and their results show that
there is no statistical difference between them. The evaluated classification error of
SVM [73] compared to 16 other methods (e.g. Decision Trees, Nearest Neighbor,
Neural Network). Their results show a good performance of SVM in most cases, but
an overall superiority cannot be confirmed. During the experiment [74][75] both used
SVM and Naive Bayes for their work related to a determined real-world problem. For
emotion Classification SVM and Naive Bayes yielded nearly equal accuracies, while
SVM outperformed Naive Bayes in predicting the Arboviral Disease-Dengue.
Research has been done in the field of terrain classification performed by
different types of robots. In the application of 1-legged robot [76] both SVM and
Neural Network were applied to classify terrains. Considering only ground reaction
force data accuracies up to 78% were obtained for both classifiers. In different
research the classification of terrain are based on torque and power consumption by
using a modular snake-like robot [77]. A closely related research to our work was
done by [78], who have compared the performance of different classifiers for
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vibration-based terrain classification. Their results showed that SVM outperformed
other classifiers for this application, namely Probabilistic Neural Network, Brook’s
Method, k-Nearest Neighbor, Decision Trees and Naive Bayes. They also investigated

on the classification results for different robot speeds, concluding that data collected

at lower speeds were more difficult to classify and mixed datasets had a negative
impact on the classification performance when compared to the results on individual
velocities.

The Support Vector Machines is a supervised learning model consists of
training data input and output which is used to for the either for classification or
regression analysis. Standard Support Vector Machine (SVM) is developed to solve
binary classification or Dichotomic classification (two classes only). A problem
occurs when more than two classes need to be classified and is resolved by break it

down to a several binary problems as the standard Support Vector Machine shown in

Figure 2.6.
FIGURE 2.6
Comparison between SVM Binary Classi ions and i SVM CI
X2
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The motivation in using Support Vector Classification is to find the optimal
separating hyperplane that is believed to be optimal separated if the space between
vector to hyperplane is optimal and without separation errors. Classification or which
is also referred to as supervised learning in the literature, is the task to categorize a
given instance into one of several previous known classes. Algorithms that fulfill this
task are called classifiers. A classification algorithm involves two phases: training and
application phase. During the training phase the algorithms tends to learn a model
based on a given training set consisting of labeled instances

In the application phase the classifier assigns the most likely class to a new
observation based on the learned information. A lot of different classifiers have been
developed in the past decades: i.e. Naive Bayes, K-Nearest Neighbor, Decision tree,
Neural network and SVM.

(a) Naive Bayes
This classification algorithm considers the probability for each class c;
given the observed attributes A of the requested instance and assigns the
class with the highest probability to it. According to Bayes Theorem these
probabilities can be calculated as
P(Alc;). P(ci)
P(4)

Naive Bayes classifier assumes all attributes to be statistically

P(ci|A)A =

independent, which simplifies the calculation of P(A|c;). As a
consequence only the probabilities P(c;) and P(a;|c;) for all classes ¢; and
attribute realization a; is needed. The training phase is used to estimate
them.
(b) K-Nearest Neighbor

To determine the class of an unknown instance the k-Nearest Neighbor
classifier considers similar instances from the training set. As instances
with n attributes can be interpreted as points in an n-dimensional space, it
is possible to determine for a requested instance the K closest points out of

the training set in terms of a di; metric e.g. Euclid di [79].

The most represented class among the k neighbors is expected to be the

class of the requested instance.
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(c) Decision tree
In the training phase decision tree algorithms recursively search for a
proper attribute to partition the training data into more homogenous
subsets [63]. The result is a hierarchical structure, where all internal nodes
have an associated splitting attribute and all leaf nodes contain the related
classes. A large amount of decision tree classifiers have been introduced in
the literature; they mainly differ in the way to find the best attribute to
split.

(d) Neural network
An artificial neural network is a simplified model of the brain consisting of
interconnected nodes which simulate biological neurons. A threshold is
associated with each node, a weight with each connection. If and only if
the weighted sum of all inputs to a node exceeds its threshold the node
fires [80]. In the training phase all thresholds and weights are adjusted
until the outputs of the neural network for instances of the training set
match their real classes.

(e) Support Vector Machine
SVM is a binary classifier that maps the input data into a sufficient-high
dimensional space where the training instances become linearly separable.
The separating hyperplane which maximizes the margin between it and the
closest training instances is determined in the training phase and used for

classification in the application phase.
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2.4.3.1 Kernel Functions

SVM is a computing method based on statistical learning and optimization

theories [16]. It is chosen as the classification algorithm in the recognition module

h

of its rob in rep ing the information at the boundary class [17].
During the training process of SVM, it finds a set of hyperplanes to maximize the
margin among themselves and the nearest data samples of arbitrary classes so that
these hyperplanes are separable for data classification. SVM is initially designed to

handle data of two classes where they are separated by

wix+b=0 Equation 2-1

Where x is the data sample, w is the weight vector, and b is bias for constant offsets.

In many circumstances, a real-world data is complex. A linear SVM system
may be not effective to separate this complex data that are non-linear. A way is to
introduce a soft margin approach to handle non-linear problems. Another way to
overcome this limitation of the SVM model is to include a non-linear kernel trick to
make non-linear transformation of the data space to improve its recognition ability. In
this case, the kernel tricks such as radial basis function, polynomial function and etc

[18] can provide mapping from linear to non-linear classification.
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2.4.3.2 SVM for Multiclass Classification Task

Agricultural track robot is essential to have the ability to classify more than
two terrain types. SVM adopts two strategies to classify the data samples of multi-
classes, i.e., either One-Versus-One (OVO) or One-Versus-All (OVA). The OVO
strategy is firstly introduced in SVM [20] and it is also known as pairwise coupling or
round robin. It is actually a basic form of binary classification. Let say n data pairs
D={x,,y,},m=1,..,n are available for training, where x,, € R’ is a feature vector
indicating the m sample, and y,, € {1,2,..K} is the class label of x,,. The SVM model
that implements OVO will consist of K(K—1)/2 binary SVMs. On the other hand,
the OVA strategy is applied to build K SVMs where the i-th SVM is trained with all
the data samples of the i-class coded as 1, and the data samples of other classes coded
as -1. In this work, the SVM model is built to solve a problem by using an OVA

strategy, as follows.

Minimize olw,. & )=0.5%w | + CZ:':I & Equation 2-2
Subject to 2w, 60x))+8)21- &, sign(z, )=
z/(<w,,¢(x/)>+b,)sl—§/', si@(z/):i Equation 2-3
£20

where C is a predefined parameter being introduced according to a soft margin
approach and it controls the trade-off between training accuracy and generalization

(an example of the effect of C on a linear SVM is illustrated in Figure 5-4). The w, is
the weight vectors of SVM trained with data samples from two classes; g(x;) is the
kernel function; b, is a scalar; & is the slack variable that permits i=1:-,n,
constraints to be violated; z, e {-11} is the class label for the classifier. Given a data

sample x, the decision function of the SVM is

Class(x) = arg max,, (( W, ,x> + b,) Equation 2-4
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In higher dimensional feature space, kernel function is used to construct the
mapping for the Support Vector Classification. Problem often arises when choosing
the specific parameters (i.e. Kernels of features) process which affect the accuracy of

the data are mapped.
The training data in two separate classes is defined as
Dy = {(Xp1),..(XuY)),  XE€R", Ye{-11}
Where
Dris the training data, T is the sampling time
The hyperplane for mapping process
W, X)+b=0

‘Which said to be optimized if separated by the hyperplane is done without error with

the distance between the vectors is maximized. With plotted region of
W,X)+b 2 +1if Yi=+1
W, X)+b <+1if Yi=-1

The Equation is the region that supports the hyperplane and no training data should be
within the support plane. The training data should be outside or at the positive or

negative support plane as shown in Figure 2.7.

FIGURE 2.7
Separating Hyperplane in the SVM between Two Data Sets
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FIGURE 2.8
The effect of soft margin constant C. On the left side (a) C = 10 and at the right side (b) C = 100.
The figure shows that the positive and negative samples can be separated by a hyperplane. In the
case of (b), when the margin value increases, the hyperplane is closer to the boundary. By
selecting an appropriate value of the parameter C, the SVM can perform with optimum
classification results by reducing its training errors. [81]

(@ C=10 (b) C =100

A numbers of kernel are deployed during the classification process. The
kemnels transform all the data set in a Euclidean Space where variation of methods
used to during the classification. Popular kernels are use during the classification such

as Polynomial, Quadratic, Linear and Radial Basic Function (RBF).
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2.4.3.3 Hierarchical Support Vector Machine

Another technique to adopt SVM to multi-class problems is called
Hierarchical Support Vector Machine [82]. The algorithm recursively partitions the
set of classes into subsets. To determine a good split a max-cut problem is solved.
Taking into account natural groupings using a distance measure the partitions with the
maximum total distance between them are searched. Therefore HSVM promises not
only high accuracy but also imposes little parameter tuning. Each internal node of the
hierarchy represents a binary SVM. The partitioning of the data is stopped when all

leaf nodes are pure containing only instances of one class shown in Figure 2.9.

FIGURE 2.9
Hierarchical Support Vector Machine
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Each of the learning machines has its own tradeoff between accuracy and
efficiency but in the terrain classification process, a robust and easy to use is the key
in choosing the correct learning machine. Thus Support Vector Machine is selected as
the main learning machine for the terrain classification. The Support Vector Machine
also supports multiclass classification which is needed in classifying agriculture

terrain.
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CHAPTER THREE
DEVELOPMENT OF TRACK DRIVEN AGRICULTURE ROBOT

3.1 INTRODUCTION

This chapter aims to present on the development of the track robot
mechanical ~ structure design architecture. Within this chapter all the
mechanical design such as the drive mechanism, flipper arm mechanism and
the overall design is presented as well as the calculation, simulation and
Computer Aided Design (CAD) used during prototype development. The
track robot must be able to traverse across rough. The design paradigm
introduced in this chapter to address such problem. The ideas proposed are

a. The track robot is design with one DOF manipulator arm rather
than only the track to provide better traction and stability during
operation. The arm design must be strong enough to support its
own weight.

b. The center gravity of the track robot must be lower enough to
maintain its stability during traversing on rough terrains or muddy
terrains.

This chapter also covers the simulations on the track robot
mechanical structure using ANSYS software which is performed to study the
effect and expected capability of the design optimization. The designs are
assembled and develop using CATIA 3D Computer Aided Design (CAD)
software and then modeled on ANSYS software to perform the simulation

analysis.
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3.1.1 Mechanical Design

The track driven robot uses articulated tracks to improve traction on
the agriculture field. The arm can be used in different mode of operations.
The arm is used to provide better maneuverability and traction. The flipper

arm sy also di d to enh the ability to climb over an obstacle

taller than the robot and shown in Figure 3.1.

FIGURE 3.1
Overall Mechanical Design of the Track driven robot

Both length of the robot are shown in Table 3.1 the mechanical specification

for prototype develop Both di ion of the robot during extension and folding

show in the table.

TABLE 3.1
The physical specification for the Track Robot

Overall weight of the robot 15kg
Total length when the arms are fully extended | 56.0 cm

Total length when the arms are fully folded 38.5cm
Total width of the robot 44.0 cm
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3.1.2 Motor Layout

The layout is divided into two parts, drive mechanism and flipper arm
mechanism. The drive and flipper arm mechanism are carefully select based on data
and performance analysis to ensure the motion is smooth and efficient. In the
mechanical design, twin DC motor is situated at the back of the robot as the main
propulsion system and single motor with worm gear module at the front is shown in
Figure 3.2 shows the position for drive motor and flipper arm motor.

FIGURE 3.2
Position Drive Motor and Flipper Arm Motor

44.0 CM (WIDTH)

38.0 CM (FOLDING) | !

' 56.0 CM (EXTENDED)
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3.1.3 Drive Mechanism

The drive mechanism consists of two brushless DC motor propelling the robot.
Driving mechanism is designed to be linked with passive wheel in front using a
custom design articulated track system conveyed through 1:32.5 ratio planetary
gearbox brushless dc motor. The motor are chosen due to the high efficiency and
torque compared to normal gearbox system. The drive motor uses 24VDC with rated

power up to 49.5 W, propelling the robot with 2.7 Nm continues torque.

FIGURE 3.3
Design architecture for the Drive Mechanism and gear ratios

The motion from the motor is transmitted through 1:3 ratio spur gears thus
increasing the propelling torque to 8.1 N.m. The increase of the torque ratio is needed
to compensate the load from the flipper arm module.

The motor selection is important to ensure a smooth motion during the
operation. It is vital for the motor to provide enough torque and calculated using basic

torque formula.

T=Fxd Equation 3-1
Where

T is the torque needed for the drive system

F is the force acting on the system

d is the distance between the force and the centre point of the torque
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The equation is expanded to include the centre of gravity, CG , dmotor shaft

and number of drive motor, n. The equation is visualize in Figure 3.4 below

T = F X (CGtotat — Amotor shaft) Equation 3-2

Y (weight X d¢g)

T=_mgX ~Sweight motor shart)
Where
dmotor shase 1S the distance from shaft of motor to the reference axis
deg is the distance from centre of gravity to the reference axis
F is the mass times the gravitational acceleration
n is the number of drive motor
FIGURE 3.4

Diagram of Track-Driven Robot

Cg  dmetorsnan
19 cm Referance
St Axis

4 cm.

>

S Sy S

Substituting the parameters,

_1 L(15x0.19)
=3 (15)(9.81) x (—215 0.04)

T = 2.7590 N.m is needed for a single motor in normal operation
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But in the real agriculture field, the worst case situation is assumed by
introducing a ramp in the system. The calculation is derived from Equation 3-
1, the force acting on the track robot divided into Fy and F; elements

illustrated in Figure 3.5.

FIGURE 3.5
Tllustration of the worst case scenario

Fy = mgcosé@

Terrain

Fr =mgsing X u

X

T=Fxd Equation 3-2
T=(F +Fy)xr
T = [(mgsinB x p) + (mgcosb)] x r

Where
6 = Angle of terrain
u = Coefficient of static friction (Gravel)

The same case as the normal torque condition, the drive motor used in
the system to drive the tracks is included in the calculations. Hence, the value
of torque should be divided with the number of motor used to move the

robot.

= i[(mgsina X p) + (mgcos@)] x r Equation 3-3
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Substituting the parameters, assuming the worse angle 6 = 45°

T= i[(mgsin@ X u) + (mgcos@)] xr
T= %[(15 X 9.81 x sin45 x 0.85) + (15 x 9.81 X cos45)] x 0.04
T=3.8499 N.m

The calculation indicates that the maximum torque required in the worst case
scenario the robot is 3.8499 N.m which more than the normal operation
i 27590 N.m on a single track. In the design, two brushless planetary gears Dc
Motor system is used with the specifications

i. Voltage (V) =24V DC
ii. Torque (1) = 2.7916 Nm

The default torque from the motor is not enough to support the robot during
motion thus torque amplification is needed to support the requirement torque. A set of
spur gear with ratio of 1:3 is used on each motor to amplify the torque. The new
torque from the motor is calculated using

Ny Tnew = N2Tola

(DTpew = (3)(2.7916)

Tpew = 8.3748Nm

Where
ny, My is the ratio of the mechanical system
Tnew is the new torque required
Told is the torque from the motor
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The main

ge of using

| gear ratios is reduces in the

efficiency. All loses in the system is due to the friction between gears producing heat

and vibration thus reducing the gear performance. The comparison of efficiency

between gears is listed in Table 3.2.

TABLE 3.2
Comparison between types of Gear
Gear Type Shafts Efficiency (%)
Spur Parallel 80
Helical Parallel/Perpendicular 80
Sprocket with Chain Parallel 80
Bevel Perpendicular 70
Rack and Pinion - 90
Worm Perpendicular 70
Planetary Parallel 80

Based on the Table 4-2 spur gear has an efficiency of 80% and taking into account

other factor such as tooths slippage. Thus:

Tnew =80 % X 83748 N.m

To00new = 6:6994 N.m

The calculation shows the reduction of efficiency of 20% producing torque of

Tgoo new = 6.6994 N.m compared to the Tp,, = 8.3748Nm. The new torque

calculation indicates the motor is suitable as the main drive system with extra torque

than needed.
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3.1.4 Flipper Arm Mechanism

For the flipper arm mechanism design, a single industrial brush motor is used
to manipulate the flipper arm module. The motor is integrated with worm gearbox
system which increase the torque tremendously but with drawback decreasing in
speed. The worm gear easily turns the gear but not possible for the gear to do the
opposite due to shallow angle generating friction holding the gears in to places.
Flipper arm torque motor is calculated based on the worst case scenario of climbing
obstacle which is higher than the robot itself and illustrated in Figure 3.6.

FIGURE 3.6
Agriculture Track Robot climbing obstacle.
]
Cg
|
mz m
Where

my Mass of Robot

m; Mass of Robot Flipper

Cy Centre of Gravity

Ly Length between Front and Back Wheel
6, Angle of the Flipper when contact with obstacle
A Angle of the Flipper to the main body
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The same torque equation is used to calculate the required torque to support

the entire track robot weight during operation.
T=Fxd Equation 3-1
Where

T is the torque needed for the flipper arm
F is the force acting on the system

d is the distance between the force and the centre point of the torque

Substituting all the values
T=mgxd
T=(15.0x9.81)x0.2
7=2943N.m

Therefore, the required torque for lifting the 15 kg load is 7 = 29.43 N.m. The
flipper motors capable of delivering 8.0 N.m of torque based on the manufacturer

datasheet which less than requirement and shown in Figure 3.7.

FIGURE 3.7
Automotive Dc Motor for the Flipper Arm
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To compensate the lack of torque, an additional helical gear with 1:5 ratios is

added for multiplying the torque to the flipper arm module. Using the similar formula

M Tnew = N2Told
(DTnew = (5)(8.0)

Tnew = 40 N.m

Where
ny, Ny is the ratio of the helical gear
Tnew is the new torque after the mechanical amplification
Told is the torque from the industrial Dc Motor
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Based on the Table 4-2, the helical gear has an efficiency of 80%. Thus:

Tnew =80 % X 40 N.m

Tgoohnew = 32 N.m Required for the robot and

Figure 3.8.

1 bly is ill

FIGURE 3.8
Complete Flipper Arm Assembly with Helical Gearbox.
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3.2 MODELLING AND SIMULATION OF THE MECHANICAL
STRUCTURE

3.2.1 Introduction

Simulations of the track robot mechanical structure were performed to study
the effect and expected capability of the design optimization. The designs are
assembled and develop by using CATIA 3D Computer Aided Design (CAD) software
and then modeled on ANSYS software to perform the simulation analysis. Various
interactions must be understood when designing the mechanical structure. ANSYS
software is chosen as our simulation software due to its nature capabilities to virtually

test the design and optimizing the mechanical design.
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3.2.2 Design and Analysis

The designing process is done using Computer Aided Design (CAD) software

CATIA and further analysis and modeling is done using Finite element analysis

(FEA) in ANSYS software. During the analysis, all input data is multiply by five as

the safety factor to guarantee the structure integrity during the actual testing. During

the analysis process, the model is defined with ten nodes with three degree of freedom

on each node. In the design, aluminum alloy is chosen as the construction material

due to higher strength to weight ratio compared to steel. The material property for the

alloy is observable in Figure 3.9.

FIGURE 3.9
Properties of Aluminum Alloy
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3.2.3 Forces

The result from the analysis is observable in Figure 3.10 that the structure is
able to withstand a force up to 200 N before the flipper arm motor holder fail to hold
its integrity (in red color).

FIGURE 3.10
Directional Deformation X, Y, Z Axis based on the Applied Force: (a) X-axis, (b) Y-axis, (c) Z-
axis.

Based in Figure 3.10, the direction of deformation is applied to the X, Y and Z
axis and producing different result on each axis. Also the back side did not show any
critical deformation event with the amplified load applied to the hull structure (in blue
color). Thus, the design is considered optimum because there is no sign of failing
even after accumulated force is applied to the structure. The objective of total

deformation is identifying changes in structure when force is applied to the structure.
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33 DEVELOPMENT OF ELECTRONIC SYSTEM
3.3.1 Introduction

This chapter provides a detailed explanation of the electrical system which

purposely developed for the agriculture track robot. Most of the electronics are

custom designed to suite the requil and maximizing the space and power usage
for the robot platform shown in Figure 3.11. Internal space is not a luxury in the track
robot and the design requirement needs it to be compact and efficient for maintenance

and foolproof.

FIGURE 3.11
The Brain of the Track Robot System

The electronic system must be designed to be linked to the external element
such as the analog input or output, digital input or output, and information processing.

While many ial ‘off-the-shelf” prod meet the robot requirement but the

demand for custom PCB is required for the system to be integrated in a unique way

because of the space and power requirement.
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FIGURE 3.12
Electrical Design Architecture
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The system design architecture is divided into two levels which are high and
lower level controller. The higher level controller as the main CPU acting as the
decision making unit based on the input from the external sensors shown in Figure
3.12. The lower level controller is the microcontroller unit involves in adjusting
signals and output them to the actuating system. The communication between
microcontroller is using an I°C or Inter-integrated Circuit which is a multi-master and
slave which invented by Philips or NXP Semiconductor [83]. The I’C system is
design to reduce the workload on the main CPU or master and distribute the load to

slave units.
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The I’C system transfers data using two wire which connected to bus through
the SCL (serial clock line) and SDA (serial data line). Each devices connect thru the
wire has a unique address and the device is recognizable based on the address. Any
device which has the I°C capabilities can be connected and reducing the circuit space.
For the I°C circuit to work, pull-up resistor is needed and connected to the positive

supply of the system which shown in Figure 3.13.

FIGURE 3.13
Inter-integrated Circuit (IZC) for the Communication
Vce
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The master circuit always initiates the ’C SCL line and the slaves will
respond to the master. The speed of the I°C is from 100 KHz and up to 3.4MHz is
achievable but in the mobile robot only 100 KHz is used for data transferring. The
maximum length for the I2C wire is about one meter and has a maximum 112 number

of I’C devices.
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3.3.2 Master Circuit

The board is the main primary CPU interface attached to the special enclosure

in the robot ensuring no external element will affect the system.

FIGURE 3.14
Master circuit on the Agriculture Robot

The master circuit shown in Figure 3.14 required special attention to ensure all
external features are compatible with each other. Examples of the external features
include measuring the analog/digital inputs, producing critical analog/digital output
for the motors, decoding input values for the encoder and multi communication
protocols. To perform such processing details, 8-bit Atmel AVR 2560 microcontroller
was used. Two operating voltage 3.3VDC and 5VDV will be used for communication
and /O systems clocking over 16MHz. The system contained 54 digital pins for
general input and output (I/O), and 16 analog inputs for reading the sensor with 10

bits of resolution with reference of 5 volts.
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3.3.3 Slave Circuit

The master circuit will communicate with a slave microcontroller which is
Atmel 8-bit AVR 128 for data and command signals using the °C data line. The
master and slave purpose is to reduce the load on the main CPU and enable faster
processing speed and response. The slave circuit used to decode data from the sensors
and pass it to the master circuit for decision making process. Figure 3.15 (Red color)

shows the visualization of slave circuit is using Fritzing Software.

FIGURE 3.15
Slave Circuit using Fritzing Software
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All the sensors such as Accelerometer, Compass and GPS are connector to the
slave board for data processing thru I°C connection to the master circuit. For better
understanding of the robot systems on its environment, sets of data must be extracted
from the accelerometer and encoder then analyzed. The accelerometer used during the
experiment is from SparkFun Electronics with triple axis accelerometer and was

chosen because of fast data processing and easy to be integrated into the system.
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3.3.4 Accelerometer

Accelerometer is based on MEMS (Micro- Electro Mechanical System) shown
in Figure 3.16 that measure the physical acceleration experience by the object. The
accelerometer measures in N /s? or g-force which allows instance force measurement
relatively with the theory of proper acceleration. The motion of the sensors will be
measured by two capacitors value that been held between two plates. The change in
the capacitance value will be amplified producing voltage that is proportionate to the
acceleration. When the sensor is placed on perfectly horizontal tables a value of 1g
are measured upward to the vertical axis and Og on the other axis. In engineering the

G-force is quantified as acceleration or m/s? which is equal to 9.81 m/s? of standard

gravity.

FIGURE 3.16
Three Accelerometer from SparkFun Electronics

The sensor consume only 320uA thus making it extremely low in noise. The
full sensing range is +/- 3G and data processing rate is up to 1600 Hz on X and Y axis
and 550 Hz for the Z axis.
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3.3.5 Encoders

Encoder system is commonly used as an angular position feedback of a shaft.
The encoder is an electro-mechanical system that converts the shaft motion into
digital output and processed to gain information on speed, distance or position. There
are two types of encoders generally used; they are called absolute encoder and
incremental encoder shown in Figure 3.17. The absolute encoder works by preserving
the position information even when the power supply is detached from the system and

the information still accessible instantly when the power restored.

FIGURE 3.17
Encoder used during the Experiment

The incremental encoder working principle are different from the absolute
encoder by providing pulses consist of A and B output square wave pulses shown in

Figure 3.18 that will not preserve the last known information after a power cut off.

FIGURE 3.18
Quadrature phase of Encoder
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The output of 90 degree phase will be decoded by the mi ller interrupt

mode generating output and counting the direction or speed of the shaft. The encoder
system will be connected to the track drive module to provide all the necessary data

from the robot.
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3.3.6 Ultrasonic-range finder (SN-LV-EZ1)

The Ultrasonic-range finder in Figure 3.19 used to determine the
position of robot during the experiment. It detects an object at a distance
without the needs for the robot to actually contact them. The sensor uses
sound pulses to measure distance which has similarity with bats or
submarines. The operation of this device is by emitting an ultrasonic pulse
and timing how long it takes to hear an echo and can accurately estimate the

distance between the object from its locati The ul i ge finder can

detect up to approximately 647 centimeters, but depending on the
environment. Since the ultrasonic-range finder relies on sound waves, and

best practice on any surface that deflect sound.

FIGURE 3.19
Ultrasonic-range finder (SN-LV-EZ1)

Features:

* 42kHz Ultrasonic sensor

o Operates from 2.5-5.5V

o Low 2mA supply current

o 20Hz reading rate

o RS232 Serial Output - 3600bps
* Analog Output - 10mV/inch

* PWM Output - 147uS/inch

« Small, light weight module
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3.3.7 HMC6352 Compass module

The Compass HMC6352 module as shown in Figure 3.20 is used to
keep the position of two ultrasonic-range finder pointing at north. Compass
sensor is electrical navigational device that shows the directions of reference
that is stationary relative to the surface of the earth. This compass HMC6352

2 —axis ive

is a fully integrated compass module that
sensors with the required analog and digital support circuits, and algorithms
for headi i This

P

module provides a simplest solution

p

in terms of small size and cost effective in data collection.

FIGURE 3.20
Magnetic compass (HMC6352)

FEATURES BENEFITS
o »A Everything s Done.
| ra »a Designot
| Sensors and Blectoncs Hardware and Compassing Frmuware Routnes

b Famware inchuded »

Caubeaton
Inchuded for Quick-to-Market Designs.

b Smai Sutace Mount Package » Easy to Assemble & Compasile wih High Speed SMT Assembly
(655851 Smm. 245 LCC)

» Low T2V » Compatble

57



3.3.8 Driver

To control a DC Motors, a driver is needed to provide constant power and
control signals to the actuators. The driver works when a control pulses and PWM are
delivered from microcontroller allowing different speed and direction on the DC
Motors. PWM or pulse width modulation is culprit in controlling the DC Motor
speed or acceleration shown in Figure 3.21, the square wave signal works by means of

switching voltage on and off rapidly by changing the portion time signals.

FIGURE 3.21
Duty cycle of Pulse Width Modulation (PWM)
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All the DC Motor uses the same driver to control the motion of the actuators.

The drive is designed with capabilities to work with voltage 25VDC and the control

frequency for the PWM is up to 20KHZ with solid state components to provide fast
oL e

T wear.

P
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3.3.9 Power Distribution

The robot will be powered by lithium polymer battery (LiPO) located inside
the robot chassis. The power will be divided between the propulsion system, the main
circuit board and sensors. The high power to weight/size ratios is the reason the

battery was used allowing compact space within the robot.

FIGURE 3.22
Power Management Design

The source taken from the 12VDC LiPO is distributed along the
microcontrollers and drivers shown in Figure 3.22. The microcontroller unit capable
of operating in the range of 6 to 20VDC but recommended range by the manufacturer
is between 7 to 12VDC to prevent overheated thus damaging the board. The build in
5VDC regulator on the microcontroller board is used to power up the microcontroller
chip and harvested for powering sensors (such as in IMU or Compass) and ICs (such
as POWER MOSFET in the Driver). The driver shares and extracts the same source
from the microcontroller unit for driving Dc Motor which operates within the range of
0 to 12VDC. The microcontroller also has 3.3VDC regulator which is generated from

the FTDI chip for running low voltage sensors and chips.
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3.3.10 Communications

The robot can be either performs in manual or semi-autonomous operation.
Semi-operation uses a wireless remote controller device allowing the user to interact
with the robot using 2 joysticks and 14 digital buttons. The usage of joystick provides
more flexible travelling direction for the robot with maximum range of 100 meter.
The custom wireless systems are designed to be linked with Sony PlayStation

controller in Figure 3.23 and direct implementation is achievable.

FIGURE 3.23
PlayStation Controller

The controller was not specifically design for the robotic applications
and a major adaptation and modification are needed to archive desired
communications  protocol. The remote uses 2.4GHz transceiver with

P : h

frequency pping logy for robust wireless connection. The system

will automatically switch to another frequency band if interference is

detected within the operating range.

FIGURE 3.24
Transmitter and Receiver Module for 2.4 GHz Wireless Systems
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Another communication protocol used is the ZigBee. The ZigBee technology
has been around for many years. It is popular among the user as a low cost and
reliable solution for wireless feedback system networks. ZigBee product is intended

for application with low energy requirement with constrained energy sources.

FIGURE 3.25
ZigBee Module: Transmitter and Receiver

During the experiment, set of data will be send through the ZigBee module for
the classification algorithms. ZigBee consists of two parts — the transmitter and
receiver module shown in Figure 3.25. The ZigBee protocol uses IEEE 802.15.4 radio

3

d. The system ication range is within 1.5 kilometers

radius with 3.3V as the operating voltages.
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34  COORDINATE SYSTEM

Before the design and fabrication can be advanced, the kinematics for the
track robot must be study and truly understood. The equation for the kinematics is
based from M.Kitano and M.Kuma [1]. This chapter provides explanation on
kinematics simulation of the track driven robot and compared to small scale track
robot from actual system. The modeling for the track robot system was done using
MATLAB Simulink to simulate the output of the system. MATLAB or Matrix
Laboratory is a programming tool using numerical computing allowing matrix

MATLAB enable in designing, impl. imulating, image p ing and etc.

lations, data impl, ion algorithms and plotting function. The function on

The Simulink function allows modeling the equation through graphical user interface
for building models with assistance of a block library. Most of the kinematics models
are based on the following assumptions

a. Soil level is level

b. The mass center is constantly on the midpoint of the track vehicle
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The analysis on the track robot is done by isolating the frame in to X and Y
reference frames illustrated in Figure 3.26. The coordinate is divided in two type of
frame which defined as X-Y frame in fixed global and reference frame. The x-y frame
is a local frame fixed at geometric center of the moving track vehicle. For all the time

1, origin 0 stays at the center of gravity of the track robot.

FIGURE 3.26
Coordinate System for Tracked Vehicle Analysis.

Where
X Direction of the heading robot in X axis
y Direction of the heading robot in Y axis
2] Yaw angle
\% Linear Velocity of the origin of moving axes
B Side Slip Angle
@ Directional Angle (6 — f)
Ve Velocity component in X axis
vy Velocity component in Y axis
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The velocity V and forward and lateral accelerations a,, a, of the center of gravity

are as follows:

Velocity, V= /Vi? + V2 Equation 3-2
Forward acceleration,a, =V + ;6 Equation 3-3
Lateral acceleration, a,, =V, + V6 Equation 3-4

Side slip angle £ and side rate  are obtained as follows:

Side slip angle, f = tan‘l(:—") Equation 3-5
y
Side slip rate, f§ = 20 Equation 3-6

The relations between ¢ and coordinates X, and Y, fixed on the ground shall be:
X, = —f; Vcosgpdt Equation 3-7
Y, = f; Vsinpdt Equation 3-8
Therefore, the radius of curvature of the trajectory of the center of gravity shall be:

R. = % Equation 3-9
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3.5 EXPERIMENTAL PROCEDURE

In this chapter, the tracked robot is used to compare the experimental
result and simulation. In order to acquire the similar parameters as th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>