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ABSTRACT

CA-salt pl and plasticized CA-salt I were prepared using
solution cast technique. Cellulose acetate (CA) was used as polymer host,
ium  trifl Ifonate or triflate (NHsCF3SOs) as complex

salt, and ethylene carbonate (EC) and propylene carbonate (PC) as
plasticizers. Pristine CA has low ionic conductivity (~10"° S cm™). Salt was
added at different concentration from 5 wt.% to 50 wt.% to form CA-salt

complexes films. The plexation and i b polymer and
salt, polymer and plasticizers, and plasticizers and salt were confirmed using
Fourier Transform Infrared Sp py (FTIR). It was found that NH4"

group of salt interacted with lone palr C=0 of CA chain since there were
band shlﬂs at C=0 (ﬁ'om 1733 cm” to 1724 cm™) and NH,* group (from
1630 cm™ to 1620 cm™). Salt provides CA chain with charge carners (or
mobile ions) and thus increases the conductivity from ~2 x 10"° S cm™
6.55 x 10° S cm” by addition of 50 wt.% salt. Plasticizers further enhanced
the ionic conductivity. CA with 35 wt.% salt was chosen to be plasticized
with EC and PC. From FTIR studies, EC and PC plasticizers did not show
any interaction with CA but did show interaction with salt. EC has enhanced
ionic conductivity of CA-salt complexes better than PC and improved the
conductivity up to four orders of magnitude (6.36 x 10* S cm™ to 1.75 x 10
S em™) compared to PC by just three orders (from 6.36 x 10* S cm™ t0 9.85 x
10° S cm™) by addition of 50 wt.% plasticizers. Temperature dependence
studies has shown that the conductivity increase with increasing temperature
indicates ‘thermally assisted hopping’ mechanism. Dielectric studies show
the B-relaxation or orientation of dipolar acetyl group of CA in following
electric field direction. The orientation become faster and time taken to orient
become less since relaxa!lon frequency (fy) increases but relaxanon nme ()

as of i as well as d. Two
cells (Cell A and Cell B) with configuration of Zn || (CA -35 wt.% salt) + 50
wt.% EC || MnO; and Zn || (CA-35 wt.% salt) + 50 wt.% PC || MnO,
respectively were fabricated and characterized. Cell A and Cell B stabilized
the open circuit voltage (OCV) test at ~1.5 V and ~1.4 V respectively. The
discharge capacity of both cells were nearly the same.
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CHAPTER 1

INTRODUCTION

1.1  BACKGROUND

Before 1950’s, most of the batteries used were either Leclanché zinc-carbon primary
cell or secondary cell namely lead acid and nickel-iron (Owens et al., 1994). Since

and for different

the advances in i and integrated circuit (IC)-
portable electronic devices, the need for compact solid state batteries have been felt.
Many new battery systems are now in use while the original batteries are still
important because their performance characteristics have greatly improved (Linden.,
1994). Conventionally, the electrolyte used in batteries is liquid. However, the
availability of solid electrolytes with high ionic conductivity has stimulated the
development of solid electrolyte batteries. The solid electrolytes could be
polycrystalline, glasses, gel or polymer electrolytes. Polymer electrolytes is a
preferred choice because polymers have many advantages like mechanical stability,
chemical less reactivity, ability to form into different shapes like films, low cost and
etc. The first solid polymer electrolyte was a polymer-salt complex discovered by
Wright in 1973. Armand in 1975, was the first to propose that the polymer
electrolyte can be used as solid electrolyte in battery application. Thin film solid
polymer electrolyte batteries offer the possibility of safe battery design with good
high rate capability (Owens et al., 1994).
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