UNIVERSITI TEKNOLOGI MARA

Sr-SITE CATION SUBSTITUTION EFFECTS ON FORMATION AND SUPERCONDUCTIVITY OF (Tl,Bi)Sr₂(Ca,Y)Cu₂O₇ CERAMICS

BAKTIAR MUSA

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

April 2005

TABLE OF CONTENTS

		Page	
ACKNOWLEDGEMENT			
TABLE OF CONTENTS			
LIST OF TAB	LES	vi	
LIST OF FIGU	JRES	vii	
LIST OF PLA	ГЕS	viii	
LIST OF ABB	REVATIONS AND SYMBOLS	ix	
ABSTRACT		xvii	
CHAPTER 1	INTRODUCTON	1	
1.1	A Brief History of Superconductivity	2	
1.2	Objective of the Study	5	
1.3	Significance of the Study		
CHAPTER 2	BACKGROUND OF SUPERCONDUCTIVITY	8	
2.1	Basic Properties of Superconductors	8	
	2.1.1 Zero Resistance	8	
	2.1.2 Meissner Effect	9	
2.2	Types of Superconductor		
2.3	The Microscopic Theory of Superconductivity		
2.4	High Temperature Superconductors		
	2.4.1 Phase Diagram of High Temperature		
	Superconductors	14	
	2.4.2 High Temperature Superconducting Systems	15	
	2.4.2 [a] (La,Ba)-Cu-O System	15	
	2.4.2 [b] Y-Ba-Cu-O System	16	
	2.4.2 [c] Bismuth, Thallium and Mercury System	17	
2.5	Thallium-based Superconductors	19	
	2.5.1 The 1212-phase in TI-based Superconductors	20	

	2.5.2	The Concept of Average Cu Valence in Tl-based Compounds	21		
2.6	Applications of Superconductor				
CHAPTER 3	SAMI DETA	PLE PREPARATIONS AND EXPERIMENTAL	26		
3.1	Preparation of Bulk Samples		26		
	3.1.1	$Tl_{0.8}Bi_{0.2}Sr_{2\text{-}w}Cr_wCa_{0.9}Y_{0.1}Cu_2O_7Compounds$	28		
	3.1.2	$Tl_{0.9}Bi_{0.1}Sr_{2\cdot w}Cr_wCa_{0.9}Y_{0.1}Cu_2O_7Compounds$	29		
	3.1.3	$Tl_{0.9}Bi_{0.1}Sr_{2\text{-}x}V_xCa_{0.9}Y_{0.1}Cu_2O_7Compounds$	30		
	3.1.4	$Tl_{0.9}Bi_{0.1}Sr_{2\text{-}y}Mo_yCa_{0.9}Y_{0.1}Cu_2O_7Compounds\\$	31		
	3.1.5	$Tl_{0.9}Bi_{0.1}Sr_{2\text{-}z}In_zCa_{0.9}Y_{0.1}Cu_2O_7Compounds$	32		
3.2	Basic Sample Characterization Methods				
	3.2.1	Temperature-dependent Resistance Measurement	33		
	3.2.2	Room Temperature Resistivity Measurement	36		
	3.2.3	X-ray Diffraction Spectroscopy	37		
	3.2.3	[a] Basic Principle of X-ray Diffraction	37		
	3.2.3	[b] X-ray Diffractometer Operation	38		
	3.2.4	Scanning Electron Microscopy	39		
	3.2.4	4 [a] Sample Preparation	39		
	3.2.4	[b] Scanning Electron Microscope Operation	39		
CHAPTER 4	RESU	JLTS AND ANALYSIS	41		
4.1	$Tl_{0.8}B$	$i_{0.2}Sr_{2-w}Cr_wCa_{0.9}Y_{0.1}Cu_2O_7 (w = 0 - 0.3)$ Compounds	41		
4.2	$Tl_{0.9}Bi_{0.1}Sr_{2-w}Cr_wCa_{0.9}Y_{0.1}Cu_2O_7$ (w = 0 – 0.5) Compounds				
4.3	$Tl_{0.9}Bi_{0.1}Sr_{2-x}V_xCa_{0.9}Y_{0.1}Cu_2O_7 (x = 0 - 0.5)$ Compounds				
4.4	Tl _{0.9} B	$Tl_{0.9}Bi_{0.1}Sr_{2-y}Mo_yCa_{0.9}Y_{0.1}Cu_2O_7 (y = 0 - 0.5)$ Compounds			
4.5	The Bie 1Sr2-In-Cae Ye 1Cu2O7 ($z = 0 - 0.5$) Compounds				

ABSTRACT

In this work, elemental substitution was employed to stabilize the 1212-phase during the synthesis of TISr₂CaCu₂O₇ superconductors. Although previously this practice was mostly carried out at the Tl and Ca sites, another metallic site i.e. the Sr-site can also be equally important in stabilizing the 1212-phase. Based on the cation substituted at the Sr-site, five series of samples with nominal starting compositions $Tl_{0.8}Bi_{0.2}Sr_{2-w}Cr_wCa_{0.9}Y_{0.1}Cu_2O_7$ (w = 0 - 0.3), $Tl_{0.9}Bi_{0.1}Sr_{2-w}Cr_wCa_{0.9}Y_{0.1}Cu_2O_7 (w = 0 - 0.5), Tl_{0.9}Bi_{0.1}Sr_{2-x}V_xCa_{0.9}Y_{0.1}Cu_2O_7$ (x = 0 - 0.5), $Tl_{0.9}Bi_{0.1}Sr_{2-\nu}Mo_{\nu}Ca_{0.9}Y_{0.1}Cu_{2}O_{7}$ (y = 0 - 0.5) and $Tl_{0.9}Bi_{0.1}Sr_{2-z}In_zCa_{0.9}Y_{0.1}Cu_2O_7$ (z = 0 - 0.5) were synthesized and characterized. The polycrystalline samples were prepared by solid state synthesis using the precursor method. The final sintering of the samples was done at around 1000°C for 5 minutes in flowing O2. Tl0.8Bi0.2Sr2Ca0.9Y0.1Cu2O7 showed metallic normal state behaviour and was found to superconduct with $T_{\rm c \ zero}$ of 53 K and $T_{\rm c \ onset}$ of 77 K. Initial substitution of Cr for w = 0.1 in place of Sr caused $T_{c \text{ zero}}$ to decrease to 46 K. Further substitutions of Cr for w = 0.2and 0.3 produced non-superconducting samples. Tl_{0.9}Bi_{0.1}Sr₂Ca_{0.9}Y_{0.1}Cu₂O₇ also showed metallic normal state behaviour and was found to superconduct at $T_{\rm c \ zero}$ of 60 K and $T_{\rm c \ onset}$ of 100 K. Substitution of $M = {\rm Cr}$, V and Mo in the Tl_{0.9}Bi_{0.1}(Sr,M)₂Ca_{0.9}Y_{0.1}Cu₂O₇ series produced maximum T_{c zero} of 79 K (w = 0.3), 82 K (x = 0.2) and 84 K (y = 0.1), respectively. However, substitution of In was found to suppress $T_{\rm c}$. Structurally, all superconducting samples showed 1212 major phase with tetragonal unit cell (space group, P4/mmm). XRD analyses, which consistently showed decrease in c-lattice with dopants concentration for all series, suggest successful substitution of the smaller dopants for the larger Sr²⁺. Generally, the microstructure of the samples changes with the elemental substitutions. Simple valence calculations based on the concept of average Cu valence suggest that the valences of Cr, V and Mo in $Tl_{0.9}Bi_{0.1}(Sr, M)_2Ca_{0.9}Y_{0.1}Cu_2O_7$ (where M = Cr, V and Mo) are 3+ for both Cr and V and 5+ for Mo. Based on changes in normal state behaviour and Tc of all the above series, it is concluded that the Sr-site is significantly important for stability and superconductivity of the (Tl,Bi)Sr2(Ca,Y)Cu2O7 superconductor.

CHAPTER 1

INTRODUCTION

Superconductors, materials that have no resistance to the flow of electricity, are one of the last great frontiers of scientific discovery. Superconductivity was first observed in mercury by a Dutch physicist H. K. Onnes in 1911. Another characteristic of superconductors, the perfect diamagnetism, was discovered by W. Meissner and R. Ochsenfeld in 1933. These phenomena attracted a lot of attention which led to the introduction of several theories in the attempt of understanding the mechanism of superconductivity. The first well-accepted theory of superconductivity was proposed by Bardeen, Cooper and Schrieffer known as the BCS theory in 1957. Another significant advancement came in 1962 when Brian D. Josephson proposed the tunneling phenomenon, known as the Josephson effect.

A breakthrough in superconductivity was made by K. A. Müller and J. G. Bednorz in 1986 when they reported the superconductivity of lanthanum-barium copper oxide ceramic compound with a T_c of 35 K. This discovery marked the beginning of the era of high temperature superconductivity. Later, YBCO, BSCCO, Tl-based and Hgbased systems were also discovered with significantly higher T_c and better superconducting properties. While these HTS systems showed promising T_c , BSCCO, Tl-based and Hg-based systems have one common problem i.e. phase instability. Fortunately, this problem can be overcome by elemental substitutions. It has been observed that elemental substitution is effective in controlling charge balance in cuprate superconductors, thus stabilize its superconducting phase. Extensive work was dedicated to such processes worldwide not only as a tool to further understand the mechanism of high-temperature superconductivity but also as a means to stabilize materials in which the formal copper valence is considered too high with regards to the ideal formulation.