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ABSTRACT

This thesis reports a research carried out to simulate and characterize lead zirconate
titanate (PZT) thin film capacitors for monolithic microwave integrated circuit (MMIC)
applications.

The PZT thin film capacitor was modeled as thin film microstrip structure (TFMS)
which shares the same configurations as a conventional microstrip. The capacitor was
simulated using electromagnetic simulator Sonnet to determine the important
characteri stics of 50 n line width , and PZT thickness and permittivity. For a 50 n line,
the width obtained is merely 300 nm for a PZT of e; = 100. This results in size reduction
of more than fifty times compared to conventional MMIC. Various capacitor areas were
also simulated and the effects of parameters such as e-, d and A on the capacitance
values were investigated. The capacitance is simulated for film thicknesses ranging from
0.1 to 0.3 urn and e; from 100 to 1000. The capacitor electrode areas were changed from
3 x 3 /-lm2 to 50 x 50 /-lm2 over the frequency range of 1 - 100 GHz.

In order to prove the feasibility of this new idea, capacitors utilizing PZT thin films were
deposited on Pt/Ti/SiOj-coated Si substrates. The films were grown by RF sputtering ,
and platinum and gold electrodes were delineated on the samples using electron beam
lithography. For an electrode area of 50 x 50 /-lm2

, capacitance values of 10 pF were
obtained at frequencies up to 20 GHz. Suitable de-embedding of S-parameters using
Cascade microwave probes revealed films with e; of the order of300 to 500.

To the author 's knowledge this project constitutes the first work on PZT thin film
capacitors for MMIC applications.
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CHAPTERl

INTRODUCTION - RESEARCH FRAMEWORK

1.0 Introduction

This chapter provides an overview of the work involved in this research. It provides the

background and gives the rationale for the study. A brief overview of microwave

technology and its applications serves to give a basic understanding of microwaves. A

discussion of the main issues and problems in current technology sets forth the rationale,

significance and objectives that led to this research. The chapter ends with a description

of the organizat ion of this thesis.

1.1 A Brief Overview of Microwave Technology and Its Applications

The field of microwave engineering is receiving significant industrial attention due to its

important role of improving lifestyle. People commonly associate this technology with

the domestic oven. This results in the technology being mainly associated with cooking.

However , in reality, it covers a bigger aspect in our lives.

The term 'microwave' refers to alternating current (ac) signals with frequency range

between 300 MHz and 300 GHz [1]. Microwave is a part of electromagnetic spectrum as

shown in Fig. 1.1.
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