UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF THERMO-MECHANICAL TREATMENTS AND EXTERNAL MAGNETIC FIELDS ON THE TRANSPORT CRITICAL CURRENT OF Cr, Mo AND In SUBSTITUTED TI-1212 DIP-COATED TAPES

.

ROHANI BINTI OMAR

Master

.

MAC 2007

Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of candicate	ROHANI BT OMAR
Candidate's ID No.	2002101146
Programme	AS 780
Faculty	FACULTY OF APPLIED SCIENCE
Thesis Title	The Effect Of Thermo-Mechanical Treatments And External Magnetic Fields On The Transport Critical Current Of \mathcal{E}_{T} , Mo And In Substituted TI-1212 Dip-Coated Tapes.

Signature of candidate

Date

26/2/07

ABSTRACT

In this work, Tl-1212/Ag dip-coated (DC) tapes were fabricated using Tl1212 superconducting powders prepared from different nominal compositions and subjected to different combinations of thermal and mechanical treatments. The effects of the thermo-mechanical treatment on the transport critical current density (J_c) in zero field and low magnetic fields were investigated. The superconducting powder prepared with nominal compositions $Tl_{0.9}Cr_{0.1}Sr_2Ca_{0.9}Pr_{0.1}Cu_2O_7$ (Cr-tapes), $Tl_{0.9}Bi_{0.1}Sr_{1.9}Mo_{0.1}Ca_{0.9}Y_{0.1}Cu_2O_7$ (Mo-tapes) and $Tl_{0.9}Bi_{0.1}Sr_{1.9}In_{0.1}Ca_{0.9}Y_{0.1}Cu_2O_7$ (Intapes) which were synthesized by conventional solid state method. In the DC technique, silver strips were dipped into slurry made from mixture of superconducting powder, solvent, binder and dispersant. Some of the resulting tapes were subjected to mechanical rolling to investigate the effect of rolling on 1212 phase formation, critical temperature, T_c and critical current density (J_c) of the tapes. For Cr-tapes, reannealing at > 870 °C caused higher Tl, evaporation resulted in lower 1212 volume % and produced partial melted microstructure. By considering the volume % of 1212, T_c and J_c , annealing at 870 °C was the best heat treatment to produce reasonable J_c . The higher magnitude of J_c is attributed to the enhancement of grains contact within the core of the tapes as observed form its microstructure. For Mo-tapes, it was observed that different thermomechanical treatment on the tapes resulted in different values of J_c . J_c enhancement was observed for tapes annealed at $\geq 870^{\circ}$ C in combination with mechanical rolling. The results show that re-annealing at $\geq 870^{\circ}$ C improves 1212 phase formation and J_c for Motapes. However annealing at lower temperature caused the presence of higher amount SrCO₃. The best performance in external magnetic field was observed for rolled tapes annealed at 910° C. For In-tapes, annealing at higher temperature improves 1212 phase and reduced SrCO₃ content. The presence of SrCO₃ may be the other reason for lower T_c and J_c values. The performance of J_c in magnetic field was limited by weak links. However, the development of strong links was much easier for In-tapes compared to Mo-tapes. In general, mechanical rolling promotes grains connectivity and improves intergranular connectivity. It was observed that appropriate annealing temperature in combination with rolling improves 1212 phase, T_c and J_c . However the presences of impurities limit the superconducting properties of the dip-coated tapes. J_c observed in this work are generally comparable to the values of TI-1212 tapes using powder-in-tube (PIT) method.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF PLATES	xviii
LIST OF ABBREVIATIONS OR GLOSSARY	xix

CHAI	APTER 1 INTRODUCTION		1	
1.1	A Brief History of Superconductivity		4	
1.2	Basic Properties of Superconductor		7	
	1.2.1	Zero Resistance	8	
	1.2.2	Meissner Effect	9	
1.3 Other Major Properties		Major Properties	10	
	1.3.1	Specific Heat	10	
	1.3.2	Energy Gap	11	
	1.3.3	Isotope Effect	13	
1.4	High Temperature Superconducting Dip Coated Tapes		13	
1.5	Objectives of the Study		16	
1.6	Significant of the Study		17	

CHAPTER 1

INTRODUCTION

The phenomenon of superconductivity has always been very exciting and has been explored both for fundamental and scientific interest and for possible technical applications. Superconductors have many remarkable electromagnetic properties, and most applications take advantages of such properties. A superconductor exhibits no electric resistance to dc current, no heating and no losses. For example, once a current is produced in a superconducting ring maintained at a sufficiently low temperature, it will persist with no measurable decay. In addition to the property of zero resistance, a superconductor can expel applied magnetic fields so that the field is always zero everywhere inside the superconductor. The material is able to expel or exclude external magnetic field from its interior. The most interesting consequence of this behavior is the ability to levitate permanent magnet over a superconducting surface.

In conventional superconductors, superconductivity is caused by a force of attraction between electron pairs arising from the exchange of phonons. This mechanism of conventional superconductors based on electron-phonon interaction was successfully explained by the BCS theory. There also exists a class of material, known as unconventional superconductors, that exhibit superconductivity but whose physical properties contradict the BCS theory. In particular, high-temperature superconductors superconduct at temperatures much higher than should be possible according to the BCS theory. High temperature superconductors (HTSC) consist of several cooper-oxide based system which are Y (RE-Earth), Bi, Tl and Hg with critical temperature above 77 K. The most well known of high temperature superconductor is YBa₂Cu₃O_{7- δ} (Y123) with transition temperature higher than 92K (Wu et al. 1987). The high-temperature

1