UNIVERSITI TEKNOLOGI MARA

FABRICATION OF NANO-COMPOSITED Sn-doped ZnO/TiO₂ BASED DYE-SENSITIZED SOLAR CELLS

SAURDI BIN ISHAK

PhD

August 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations

of Universiti Teknologi MARA. This work is original and is the result of my own

work, unless otherwise indicated or acknowledged as referenced work. This thesis has

not been submitted to any other academic institution or non institution for any other

degree of qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and

Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of

my study and research. In the event that my thesis be found to violate the conditions

mentioned above, I voluntarily waive the right of conferment of my degree and agree

be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Student : Saurdi Bin Ishak

Student I.D. No. : 2011268016

Programme : Doctor of Philosophy - EE990

Faculty : Electrical Engineering

Thesis Title : Fabrication of Nano-Composited Sn-doped ZnO/TiO₂

Based Dye-Sensitized Solar Cells

Signature of Student :

Date : August 2018

iii

ABSTRACT

Dye-sensitized solar cells (DSSCs) that belong to the third generation of solar cells are attractive due to cheap and ease of solar cell fabrication. Therefore, much research has been conducted to create an efficient solar cell. The following research illustrates for the first time development of aligned ZnO nanorod on Sn-doped ZnO films by using sonicated sol-gel immersion methods for dye-sensitized solar cells and the fabricated DSSCs show the improvement of photovoltaic properties and than from a novel photoanode of nano-composited aligned ZnO nanorod/TiO₂:Nb a significant improvement on photovoltaic properties was obtained. The Sn-doped ZnO films were used as a seed layer for nanorod growth, where the Sn-doped ZnO films at 2 at.% shows the best of electrical and optical properties. As a result, the aligned ZnO nanorod with relatively high aspect ratio was grown on ITO-coated glass at 2 at.% Sn-doped ZnO films using sonicated sol-gel immersion methods. The resulting of ZnO nanorod length and diameter were around 1.8µm and 120nm, respectively. Since the absorption of dye is dependent to aspect ratio or surface area ZnO nanorod and therefore the fabricated DSSCs shows improvement of energy conversion efficiency 0.599% as compared to the fabricated DSSCs using aligned ZnO nanorod on undoped ZnO film, ZnO nanorod on 1 at.% Sn-doped ZnO film and ZnO nanorod on 3 at.% Sn-doped ZnO film were 0.107%, 0.250%, and 0.206%, respectively. Besides that, the surface area of aligned ZnO nanorod was increased by varying the solution concentration parameter. It was found that by using 0.03M Zinc acetate solution the aspect ratio of ZnO nanorod was higher as compared to 0.05M. Therefore, the fabricated DSSCs using 0.03M ZnO nanorod shows the improvement of efficiency to 0.989 %. The aligned ZnO nanorod with better aspect ratio and larger surface area was efficiently for dye absorption and light harvesting that contributed to the improvement of DSSCs. Meanwhile, the presence of TiO₂ nanoparticles on top of ZnO nanorods might increase the internal surface area of photoanode that absorbed more dye molecules and resulting of increasing the photocurrent density 8.579 mA/cm² as well as energy conversion efficiency of 2.543%. Furthermore, the improvement of DSSCs for nano-composited aligned ZnO nanorod/ TiO₂:Nb was closely related to the improvement of electrical properties of TiO₂ nanoparticle from Nb-doped TiO₂ at 5 at.% The Nb-doped TiO₂ at 5 at.% shows higher of electrical properties that contributes better of electron transport properties. A novel photoanode of nanocomposited aligned ZnO nanorod/TiO₂ with Nb-doped TiO₂ at 5.% shows the significant improvement of photocurrent density and energy conversion efficiency of 18.156 mA/cm² and 5.376%, respectively. The enhancement of energy conversion efficiency of the nano-composited aligned ZnO Nanorod/TiO2:Nb-5 at.% DSSCs can be due to the enhanced electron-injection efficiency caused by the positive shift in V_{fb} which help increase J_{sc} and reduce the charge recombination.

TABLE OF CONTENTS

	Page
COMFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
CHAPTER ONE: INTRODUCTION	1
1.1 Introduction	1
1.2 Problem Statement	5
1.3 Objective of the Research	7
1.4 Scope of the Research	7
1.5 Significance of the Research	8
1.6 Thesis Organization	9
CHAPTER TWO: LITERATURE REVIEW	10
2.1 Introduction	10
2.2 A Brief History of Solar cell Development	10
2.3 Dye-Sensitized Solar Cells	13
2.3.1 The ZnO Nanorod and ZnO Nanorod/TiO ₂ composites Based	16
Dye-Sensitized Solar Cells	
2.4 Chapter Summary	29
CHAPTER THREE: METHODOLOGY	30
3.1 Introduction	30
3.2 Substrate Cleaning	33
3.3 Fabrication of ZnO Based Dye-sensitized Solar Cells	34

3.3.1 Preparation of Sn-doped ZnO Seed Layer	34
3.3.2 Preparation of Aligned ZnO Nanorod on Sn-doped ZnO	37
Seed layer at Different Sn Concentrations	
3.3.2.1 Fabrication of Dye-sensitized Solar Cells using	39
Aligned ZnO Nanorod at different Sn	
Concentrations	
3.3.3 Preparation of Aligned ZnO Nanorod on Sn-doped ZnO	41
Seed layer at Different Zinc Acetate Solution Concentrations	
3.3.3.1 Fabrication of Dye-sensitized Solar Cells using	43
Aligned ZnO Nanorod at different Zinc Acetate Solution	
Concentrations	
3.4 Fabrication of ZnO/TiO ₂ Based Dye-sensitized Solar Cells	45
3.4.1 Preparation of Nanostructured TiO2 Thin Films at Different	46
deposition Frequencies	
3.4.2 Preparation of Nano-composited Aligned ZnO nanorod/TiO ₂	47
Thin Films at Different Deposition Frequencies	
3.4.2.1 Fabrication of DSSCs Using Nano-composited	49
Aligned ZnO Nanorod/ TiO_2 at Different Deposition	
Frequencies	
3.4.3 Preparation of Nanostructured TiO ₂ :Nb Thin Films at Different	52
Nb Concentrations	
3.4.4 Preparation of Nano-Composited Aligned ZnO nanorod/TiO ₂ :Nb	53
Thin Films at Different Nb Concentrations	
3.4.4.1 Fabrication of DSSCs Using Nano-composited	55
Aligned ZnO Nanorod/TiO2:Nb at Different	
Nb Concentrations	
3.5 Characterization Methods	57
3.5.1 Structural Properties	57
3.5.1.1 Field Emission Scanning Electron Microscopy (FESEM)	57
3.5.1.2 Atomic Force Microscopy (AFM)	57
3.5.1.3 X-ray Diffraction (XRD)	58
3.5.1.4 Thickness Profilometry	58
3.5.2 Optical Properties	58