SYNTHESIS OF CaAl-3,4-DICHLOROPHENOXYACETIC ACID LAYERED DOUBLE HYDROXIDES (LDH) VIA CO-PRECIPITATION METHOD AND ITS CONTROLLED RELEASE ACTIVITIES

AQMAR AQEEM BIN AZHAR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitle "Synthesis of CaAl-3,4-Dichlorophenoxacetic acid Layered Double Hydroxide (LDH) via Coprecipitation Method and Its Controlled Release Activities" was submitted by Aqmar Aqeem Bin Azhar, in partial fulfilment of the requirements for the Degree of Bachelor Science (Hons,) Chemistry, in the Faculty of Applied Sciences, and was approved by

> Tuan Dr. Sheikh Ahmad Izaddin bin Sheikh Mohd Ghazali Supervisor B. Sc. (Hons) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni binti Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:_____

TABLE OF CONTENT

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
	1.1.1 Nano-composites	1
1.2	Layered double hydroxide (LDH)	2
1.3	3,4-Dichlorophenoxyacetic acid (3,4-D)	3
1.4	Intercalation process	5
1.5	Problem statement	6
1.6	Significant of study	7
1.7	Objectives of study	8

CHAPTER 2 LITERATURE REVIEW

Historical background		
Structu	re of layered double hydroxide (LDH)	13
Synthe	esis of layered double hydroxide (LDH)	13
2.3.1	Co-precipitation method	14
2.3.2	Salt oxide method	15
2.3.3	Hydrothermal synthesis method	15
2.3.4	Ion exchange method	16
Applic	ation of layered double hydroxide (LDH)	17
2.4.1	Catalyst	17
2.4.2	Water treatment	17
2.4.3	Additives in concrete and flame retardant	18
Herbic	ides	19
	Histori Structu Synthe 2.3.1 2.3.2 2.3.3 2.3.4 Applic 2.4.1 2.4.2 2.4.3 Herbic	 Historical background Structure of layered double hydroxide (LDH) Synthesis of layered double hydroxide (LDH) 2.3.1 Co-precipitation method 2.3.2 Salt oxide method 2.3.3 Hydrothermal synthesis method 2.3.4 Ion exchange method Application of layered double hydroxide (LDH) 2.4.1 Catalyst 2.4.2 Water treatment 2.4.3 Additives in concrete and flame retardant Herbicides

CHAPTER 3 MATERIALS AND METHODOLOGY

3.1	Materials	21
3.2	Apparatus	21
3.3	Preparation of Calcium-Aluminium layered double	21
	hydroxide (CaAl-LDH)	
3.4	Synthesis of CaAl-3,4-D-LDH via co-precipitation method	24

3.5	Preparation of nanocomposite controlled release	26
3.6	Characterization of CaAl-3,4-D-LDH	26
	3.6.1 Powder X-ray Diffraction (PXRD) analysis	26
	3.6.2 Attenuated Total Reflection Fourier Transfor Infrared (ATR-FTIR)	rm 26
СНА	APTER 4 RESULTS AND DISCUSSIONS	
4.1	Powder X-Ray Diffraction (PXRD) analysis	27
4.2	Attenuated Total Reflection Fourier Transform	28
	Infrared (ATR-FTIR)	
4.3	Controlled release study of CaAl-3,4-D-LDH	31
СНА	APTER 5 CONCLUSION AND RECOMMENDATIO	N
5.1	Conclusion	33
5.2	Recommendations	34
CIT	ED REFERENCES	35
APP	PENDICES	38
CURRICULUM VITAE		43

ABSTRACT

SYNTHESIS OF CaAl-3,4-DICHLOROPHENOXYACETIC ACID LAYERED DOUBLE HYDROXIDE (LDH) VIA CO-PRECIPITATION AND IT'S CONTROLLED RELEASE ACTIVITIES

Layered double hydroxide or hydrotalcite-like compound is a material that can be used to as a support for controlled release formulation and become an ideal solution to solve environmental problem arise from agrochemical. In this study, synthesis of CaAl-3, 4 Dichlorophenoxyacetic acid was successfully attained by the coprecipitation method with the molar ration of Ca to Al; R=2 at different concentration of 3,4-Dichlorophenoxyacetic acid. The pH for synthesis this nanocomposites is 13 ± 0.05 and kept in constant. The result obtained from the PXRD spectra showed that the basal spacing for the nanocomposite was increased from 8.76 Å to 15.47 Å. Other than that, FTIR spectrum of the synthesis of CaAl-3, 4-D nanocomposite showed the similarities of CaAl-LDH and the pure 3,4-D absorption bands which confirm the 3,4-D inserted into LDH interlayer. Besides that, there were also disappearance of the nitrate peak and formation of new peak which indicates the C=O stretching. For controlled release study, 3,4-D more efficient release in aqueous solution of Na₂CO₃ compare to NaCl with percentage release is 20.65%.