UNIVERSITI TEKNOLOGI MARA

ADHESION FAILURE OF RUBBER/METAL COMPOSITES UNDER CHLORIDE ENVIRONMENT

ISMALIZA BINTI ISMAIL

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Science

October 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, thereby, acknowledged that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student	:	Ismaliza binti Ismail
Student I.D. No	:	2011540505
Programme	:	Master of Science (AS 780)
Faculty	:	Applied Science
Thesis Title	:	Adhesion Failure of Rubber/Metal Composites under Chloride Environment

Signature of Student :

Date : October 2014

ABSTRACT

Maintaining a good adhesion between rubber to substrate bond in rubber composite structures is very crucial and of high importance to ensure a satisfactory and efficient products performance in service. The bond durability are influenced by factors of the environments such as moisture, chlorides and corrosion. Bond durability in bonded rubber components exposed in marine environment has been the main subject of study, focusing mainly on understanding the mechanisms resposible for its failures. The main objective of this work is to determine the adhesion failure mechanisms of rubber/metal composites exposed in a simulated chloride containing environment. The experimental works were divided into five major parts including salt spray test, alkaline exposure test, cathodic disbonding & anodic undermining tests, de-adhesion test in water and Linear Polarization Resistance (LPR) & Electrochemical Impedance Spectroscopy (EIS) tests. Characterization of the adhesion failures were conducted using Scanning Electron Microscopy (SEM) with Energy Dispersive X-rays Spectrometry (EDX) technique. The results found that the adhesion behaviour of the bonded rubber to metal exposed in salt environment is primarily controlled by cathodic disbonding induced by corrosion reaction. The disbondment front being cathodic due to the oxygen reduction reaction is alkaline in nature in which the alkaline media attack the 205 primer. The results were supported by cathodic disbonding, alkaline exposure and Fourier Transform Infrared Spectroscopy (FTIR). EIS analysis indicated the changes of the 205 primer barrier properties and concluded that the oxygen uptake within the water become a rate determining step towards attributing to the adhesion failure. The other results found that neither the oxidation reaction nor the water displacement are dominating the adhesion failure.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	XX
LIST OF ABBREVIATIONS	xxii

CHA	PTER ONE: INTRODUCTION	1
1.1	RUBBER TO METAL COMPOSITES	1
	1.1.1 Definition and Functions	1
1.2	ISSUES ON ADHESION FAILURES	2
	1.2.1 Water Hydrolysis	3
	1.2.2 Cathodic Disbonding	3
	1.2.3 Anodic Undermining	3
	1.2.4 Corrosion Reaction	4
1.3	PROBLEM STATEMENT	4
1.4	OBJECTIVES OF THE STUDY	5
1.5	HYPOTHESIS	5
1.6	SCOPE AND LIMITATIONS OF THE STUDY	6
СНА	PTER TWO: LITERATURE REVIEW	8
2.1	RUBBER TO METAL BOND COMPONENTS	8
	2.1.1 Introduction	8
	2.1.2 Solvent-Based Adhesives	8
	2.1.3 Rubber to Metal Adhesion	10
2.2	RUBBER TO METAL BONDS FAILURE	11

	2.2.1 Rubber Components with Metal Support	11
	2.2.2 Fracture Mechanics Approach	11
	2.2.3 Effect of Environments on Bonds Failure	12
2.3	ISSUES RELATED TO RUBBER TO METAL BONDS	12
	DEGRADATION	
	2.3.1 Ozone and Solvent Attacks	12
	2.3.2 Wax Blooming Effect	13
	2.3.3 Corrosion Attacks	14
2.4	RUBBER TO METAL BONDS FAILURES BY	15
	CORROSION ATTACK	
	2.4.1 Review on the Adhesion Failure for Rubber/Metal	15
	Composites in Corrosive Environment	
2.5	ELECTROCHEMICAL NATURE OF CORROSION	19
2.6	DE-ADHESION OF ORGANIC COATING	19
	2.6.1 Introduction	19
	2.6.2 Water Disbondment	19
	2.6.3 Adhesive Degradation	20
	2.6.4 Cathodic Delamination	20
	2.6.4.1 Variables in Cathodic Delamination	24
	2.6.4.1.1 Water and Oxygen	24
	2.6.4.1.2 Cation for Charge Neutralization	24
	2.6.4.1.3 Effect of Film Thickness	25
	2.6.4.1.4 Electrons and Catalytic Activity of	25
	Surface	
	2.6.1.5 Effect of Temperature	26
	2.6.5 Anodic Undermining	26
2.7	THE RELATIONSHIP BETWEEN CORROSION PROCESS	26
	AND ADHESION LOSS	
2.8	ADHESION THEORY	27
	2.8.1 Forces Involved in Adhesion	27
	2.8.2 Theory of Adhesion	30
	2.8.2.1 Introduction	30
	2.8.2.2 Adsorption Theory	31