UNIVERSITI TEKNOLOGI MARA

ELECTRIC POTENTIAL ASSISTED CRYSTALLIZATION OF L-ISOLEUCINE IN AQUEOUS PHASE: EXPERIMENTAL AND COMPUTATIONAL MODELLING APPROACH

NIK SALWANI BINTI MD AZMI

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Chemical Engineering

May 2017

ABSTRACT

Crystallization is a major technological process for particle formations. It is important and widely used in the production of pharmaceutical drugs since most drugs particles are produced in crystalline form. L-isoleucine is one of the drugs that exist in crystalline form and it can be produced through crystallization process. However, even slight changes in the crystallization condition can drastically alter crystals properties. Control of the process in order to control the physicochemical properties (solubility, morphology, polymorphism) is crucial to produce the right type of crystal. To overcome this problem, electric potential was applied with the intention to control the process. Hence it has become the main objective of this study to determine the effect of electric potential on solubility and mestastable zone width (MSZW) of Lisoleucine crystallization. Solubility of L-isoleucine experiment was conducted using three different methods; (1) Solubility Method A: Gravimetric method, (2) Solubility Method B: Isothermal dissolution and (3) Solubility Method C: Dissolution with controlled heating rate, while polythermal and isothermal method was adopted for the crystallization process. The results showed that all three methods gave significant difference in solubility data. The inconsistency of the solubility data led to the determination of conductivity of the solution where the presence of aggregation was proven to be present based on the critical aggregation concentration (CAC). Solubility data was also correlated to two different existing mathematical models; modified Wilson model and modified Wilson coupled with Pazuki-Rohani model, in order to assess the suitability of the model to be used for L-isoleucine. Based on the result, modified Wilson coupled with Pazuki-Rohani model was the most suitable model to explain the solubility behaviour of L-isoleucine, with and without the presence of electric potential due to the lower value of root mean square error (RMSE). Polythermal crystallization experiment revealed that the MSZW of the system with the presence of electric potential decreased compared to the MSZW without the presence of electric potential. Nucleation rate was proven to increase when electric potential was applied to the solution. Isothermal crystallization was also investigated with the presence of electric potential. The induction time reduced when the concentration increases and when the electric potential was applied to the solution, meaning that the electric potential promoted the nucleation process so that it can be achieved faster. The nucleation rate was calculated and it was found that for low supersaturation system, the nucleation rate was higher when electric potential was applied to the solution compared to the solution system without the presence of electric potential. Characterization of L-isoleucine product crystal recovered at the end of the experiment using x-ray powder diffraction (XRPD) revealed that mixture of Form A and Form B existed in the solution for polythermal crystallization method while only Form B polymorph existed in the solution for isothermal crystallization. Meanwhile, differential spectroscopy calorimetry (DSC) showed that only Form A existed in the solution for both methods. No proton transfer was observed to occur based on the characterization using Fourier transform infrared (FTIR) as no -COOH functional group was observed in the spectrum. Molecular dynamic simulation was also conducted to find the nucleation rate and compared with the experimental isothermal crystallization data. The simulated nucleation rate was found to be in a degree higher than the experimental data. The critical number of molecules and critical radius was also found to be in a good agreement with the experiment data.

ACKNOWLEDGEMENT

Alhamdulillah thanks to Allah swt. for giving me the strength, health, time and patience to complete this thesis.

A special thank you goes to my academic supervisors, Dr. Nornizar Anuar and Dr. Noor Fitrah Abu Bakar for their advice, guidance, moral support, and encouragement given to me in completing this thesis and study.

Not to forget, thank you to all my colleagues in Particle Engineering Technology Group especially Umi Rafiah Binti Shukri, Asna Nabila Binti Ahmad Zamri, Nurasikin Binti Jamburi, Mohd Zulfahmi Bin Lukman, Muhamad Fitri Bin Othman and Syawal Bin Abdullah for the continuous support during the time when the experiment was carried out.

A special thank you to Syaidatul Akma Binti Mohd Zuki and Noor Hazwani Binti Mohd Noor for being exceptional friends who are always giving me the support and encouragement in completing the study.

Finally, this thesis is dedicated to the memory my late father, Mohd Azmi, my mother, Tengku Kamariah and my siblings; Nik Mohd Syaiful, Nik Suriani, Nik Muhammad Safwan and Nik Muhammad Syahrin for the support throughout the completion of this thesis. Last but not least, I wish to thank everyone who have shown their support whom I failed to mention here.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF PLATES	xix
LIST OF SYMBOLS	xx

CHAPTER ONE: INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement and Hypotheses	2
1.3	Research Objectives	3
1.4	Scope and Limitation of the Study	4
1.5	Significance of Study	6
1.6	Thesis Layout	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	8		
2.2	2.2 Amino Acid and L-Isoleucine as a Studied Material			
	2.2.1 L-isoleucine as a Study Material	16		
2.3	Solution Chemistry and Mathematical Modelling	17		
	2.3.1 Solubility and Supersaturation	17		
	2.3.2 Mathematical Modelling Correlation	20		
	2.3.2.1 Modified Wilson Model	22		
	2.3.2.2 Pazuki-Rohani Model	24		
2.4	Crystal and Basic Crystallography	25		

	2.4.1 Miller Indices				
	2.4.2 Crystal Form				
	2.4.3 Polymorphism				
2.5	Crystallization and Kinetics				
	2.5.1	Nucleation	32		
		2.4.1.1 Primary Nucleation	32		
		2.4.1.2 Secondary Nucleation	36		
	2.5.2	Crystal Growth	36		
	2.5.3	Metastable Zone Width (MSZW)	38		
	2.5.4	Electrocrystallization	42		
		2.5.1.1 Application of Electrolysis Principal in			
		Electrocrystallization Process	45		
2.6	Mole	cular Modelling Technique	46		
	2.6.1	Molecular Dynamic Simulation	46		
		2.6.1.1 Periodic Boundary Condition	47		
		2.6.1.2 Radial Distribution Function (RDF)	48		
	2.6.2	Nucleation Rate Prediction using Molecular Dynamic Technique	50		
2.7	Summ	nary	51		
CH	APTE	R THREE: RESEARCH METHODOLOGY			
3.1	Introd	luction	52		

3.2	Materia	als		52
	3.2.1 L	isolet	icine	52
	3.2.2 Carbon Electrodes			
3.3	.3 Methodology			
	3.3.1 S	olubili	ty of L-isoleucine	54
	3	.3.1.1	Preliminary Experiment on Dissolution of L-isoleucine	55
	3	.3.1.2	Solubility Method A: Gravimetric Method	55
	3	.3.1.3	Solubility Method B: Isothermal Dissolution	56
	3	.3.1.4	Solubility Method C: Dissolution with Controlled Heating	
			Rate	57
	3	.3.1.5	Conductivity Test	58
	3	.3.1.6	Aggregation Size Measurement using Zeta Sizer	58