PHOTODEGRADATION OF CONGO RED IN AQUEOUS SOLUTION BY USING ADVANCED OXIDATION PROCESS (AOPs) TECHNIQUE

NINNA SAKINA AZMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled **"Photodegradation of congo red in aqueous solution by using advanced oxidation process (aops) technique"** was submitted by Ninna Sakina Azman, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons) Chemistry, in the Faculty of Applied Sciences, and was approved by

> Dr Nur Rahimah binti Said Supervisor B. Sc. (Hons) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abd Halim Project Coordinator B. Sc. (Hons) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni binti Musa Head of Programme B. Sc (Hons) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date: _____

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION		
1.1	Background of study	1
1.2	Problem statements	3
1.3	Significance of study	4
1.4	Objectives	5

CH	APTER 2	2 LITERATURE REVIEW	6
2.1	Dyes v	wastewater	6
2.2	Classi	fication of dyes	7
	2.2.1	Azo Dyes	9
	2.2.2	Congo red	10
2.3	Advar	nced oxidation process (AOPs)	11
	2.3.1	Heterogeneous photocatalytic reaction	12
	2.3.2	Fenton process	14
2.4	Factors t	hat affect the photocatalytic degradation	17
	2.4.1	Dyes' concentration	17
	2.4.2	Hydrogen peroxide concentration	17
	2.4.3	Variations of pH	18
	2.4.4	Additional metal	19
2.5	Charac	eterization	20
	2.5.1	Fourier Transmittance Radiation	20
	2.5.2	UV-Visible Spectroscopy	21

CHAPTER 3 METHODOLOGY

3.1	Reagents and Chemicals		23
3.2	Appar	aratus	
3.3	Photo	catalytic activity study	24
	3.3.1	Preparation of Standard Stock Solution of Dyes	24
	3.3.2	Degradation of different concentration of CR	25
	3.3.3	Degradation of dyes with addition of H ₂ O ₂	27
	3.3.4	Degradation of dyes by using Fenton process	29

23

	3.3.5 3.3.6		31 32
	5.5.0		52
CHA	PTER 4	RESULTS AND DISCUSSION	33
4.1	Introd	uction	33
4.2	Effect	of different concentration of CR blank	36
4.3	Fentor	1 process	39
	4.3.1	Congo red with H ₂ O ₂	39
	4.3.2	Comparison between with and without addition of H_2O_2	41
	4.3.3	$MnSO_4$. H_2O as metal addition	42
4.4	Hetero	ogeneous catalyst	45
	4.4.1	Effect of different mass of TiO ₂	45
4.5	Effect	of pH	50
	4.5.1	Effect of pH on Fenton Process	51
	4.5.2	Effect of pH on Heterogeneous photocatalytic reaction	53
4.6	Comp	arison between Fenton Process and Heterogeneous	55
	photod	catalytic reaction	
4.7	Study	on the FTIR of the Congo red	57
CHA	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	59

CITED REFERENCES	61
APPENDICES	64
CURRICULUM VITAE	78

ABSTRACT

Mn²⁺ AS A CATALYST IN THE PHOTODEGRADATION OF CONGO RED IN AQUEOUS SOLUTION

Congo Red (CR) is one of the complicated azo dyes which consist of three N=N double bonds. Significantly, to degrade the dyes contained in the waste water, it is necessary to choose the best method. The method that had been used in this project is advanced oxidation process or best known as AOPs method. The AOPs method used was divided into two which are Fenton process and Heterogeneous photocatalytic reaction. The Heterogeneous photocatalytic reaction which participate the present of TiO₂/UV shows a great degradation rate compared to the Fenton process with the present of Mn²⁺/H₂O₂/UV. This is because, only small volume of TiO₂ needed to degrade the CR compared to the Mn^{2+}/H_2O_2 . This is prove with 0.00133 mol of both TiO₂ catalyst and Fenton reagent, the present of TiO₂ catalyst already provide the 98.32% compared to Fenton reagent which only 87.58% of percentage degradation. The highest dye removal efficiency in both AOPs method were obtained in the acidic medium, pH 3 with time taken 90 minutes and with the highest concentration of Mn^{2+} and mass of TiO₂ which are 0.05 M, 99.92% and 0.339 g, 98.82% respectively. FTIR on the elimination of the N=N double bonds in chemical structure of CR also had been studied. Furthermore, factors that affect the photocatalytic degradation also been studied which were concentration of CR, concentration of H₂O₂, concentration of Mn²⁺, mass of TiO₂ and lastly the effect of pH.