UNIVERSITI TEKNOLOGI MARA

INVESTIGATION ON ROBOTIC GAS METAL ARC WELDING QUALITY FOR SPECIFIC SHIP PANEL STRUCTURE

MOHAMMAD RIDZWAN BIN ABDUL RAHIM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Mechanical Engineering

August 2014

AUTHOR'S DECLERATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledge as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulation for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student	30	Mohammad Ridzwan Bin Abdul Rahim
Student I.D. No.	:	2010463904
Programme	:	Master of Science
Faculty	:	Faculty of Mechanical Engineering
Title	:	Investigation on Robotic Gas Metal Arc Welding Quality for Typical Ship Panel
Signature of Student	:	Ō
Date	:	August 2014

ABSTRACT

Robotic Welding (RW) is an ideal welding method to produce airtight joint. Many parameters affect the RW quality as welding current, welding voltage, travel speed, width of weaving, torch angle, width plate, clamping position and time gaps between passed. Welding input parameters play very significant role in determining the quality of a weld formation. This parameter is applied on v-butt joint and t-fillet joint with plate thickness 4mm, 6mm and 9mm. This project is to study the Design of Experiment (DoE) which can approach the optimization of parameter design. Functions for DoE can help to create and test practical plans to gather data for statistical modelling. DoE is structured, organized method that is used to determine the relationship between the different factor (Xs) affecting a process and the output of process (Y). DoE involve designing a series of experiments, in which all relevant factors are varied systematically. When the result of these experiments are analyzed, they help to identify optimal conditions, the factors that most influence the result, those that do not, as well as details such as the existence of interactions and synergies between factors. The average percentage error for plate thickness 9 mm butt joint by using Fractional Factorial Desing is 10.049 %. The optimum parameter would be utilized to develop Welding Procedure Specification (WPS). As the final objective, the development of WPS in this project will be applied to ship panel.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	XX

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	2
1.3	Objective of the Research	3
1.4	Scope of the Research	3
1.5	Significant Contribution to New Knowledge	4

CHAPTER TWO: LITERATURE REVIEW AND FUNDAMENTAL THEORY

2.1	Literature Review				
2.2	Robotic Welding Process and Welding Parameters				
2.3	Statistical Evaluation Method by using Design of Experiment (DoE)				
	2.3.1	Taguchi and Multi-Objective Taguchi Method	8		
	2.3.2	Response Surface Methodology (RSM)	10		
	2.3.3	Factorial Design	10		
	2.3.4	Multiple Regression Model	11		
2.4	.4 Welding Discontinuity and Defect				

CHAPTER THREE: METHODOLOGY

3.1	Introduction								
3.2	Step 1: Literature Review and Workpiece Preparation (Geometries and								
	Equipment)								
3.3	Step 2: Developing WPS and Optimizing Welding Parameter								
3.4	Step 3:	Step 3: Investigate on Combination of Butt and T-Joint							
3.5	Step 4: Investigate on Welding Quality of Ship Panel Structure								
СНА	PTER	FOUR:	ROBOTIC	WELDING APPLICATION FOR SHIP					
			PANEL ST	TRUCTURE					
4.1	Prelim	inary Deve	elopment of	Robotic Welding Parameters	24				
	4.1.1	Experime	ntal Study o	on Single-pass Butt and T-Joint for 4mm Plate	25				
	4.1.2	Experime	ntal Study o	on Double-pass Butt and T-Joint for Thickness					
		of 6mm			29				
	4.1.3	Experime	ental Study o	on Three-pass Butt and T-Joint for 9mm Plate					
		Thickness	5		32				
	4.1.4	Experime	ental Study o	on Combined Butt and T-Joint with Thickness					
		of 9mm			36				
	4.1.5	Result Ar	nalysis from	Preliminary Experimental Investigation	52				
4.2	Weldin	ng Procedu	re Specifica	ation (WPS) for Plate with Thickness of					
	9mm				53				
	4.2.1	Visual Inspection Report for Butt Joint							
		4.2.1.1	Non-Destru	uctive Test (NDT)	55				
			4.2.1.1.1	Radiograph Test	55				
		4.2.1.2	Destructive	e Test	56				
			4.2.1.2.1	Bending Test	56				
			4.2.1.2.2	Macro Etching Test	57				
			4.2.1.2.3	Hardness Test	58				
			4.2.1.2.4	Tensile Test	59				
			4.2.1.2.5	Nick Break Test	60				
			4.2.1.2.6	Charpy Test	61				

4.2.2 Visual Inspection for T-Joint 9mm 63